Skip to main content

Advertisement

Log in

Formulation of Polyherbal Patches Based on Polyvinyl Alcohol and Hydroxypropylmethyl Cellulose: Characterization and In Vitro Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this research was to prepare and characterize polyherbal patches made from polyvinyl alcohol (PVA) and hydroxypropylmethyl cellulose (HPMC) with glycerine as a plasticizer. Polyherbal extracts were Luk-Pra-Kob recipes extracted with 95% ethanol. They were prepared by mixing the polymer solutions and glycerine in a beaker; subsequently, the polyherbal extracts were homogeneously mixed. Then, they were transferred into a Petri dish and dried in a hot-air oven at 70 ± 2°C for 5 h. The dry polyherbal patches were evaluated for physicochemical properties by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and a scanning electron microscope. They were studied for in vitro release and skin permeation of the marker active compound (E)-4-(3′,4′-dimethoxyphenyl)but-3-en-l-ol (compound D) using a modified Franz-type diffusion cell. The polyherbal patches made from PVA as a matrix layer were homogeneous, smooth, and compact relative to HPMC-containing polyherbal patches. The selected polyherbal patches made from PVA produced a release profile with an initial burst effect in which compound D release was 74.21 ± 6.13% within 8 h, but compound D could permeate the pig skin only 37.28 ± 5.52% and was highly accumulated in newborn pig skin at 35.90 ± 6.72%. The in vitro release and skin permeation kinetics of compound D were fitted to the Higuchi model. The polyherbal patches made from PVA could be suitably used for herbal medicine application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suksaeree J, Charoenchai L, Madaka F, Monton C, Sakunpak A, Charoonratana T, et al. Zingiber cassumunar blended patches for skin application: formulation, physicochemical properties, and in vitro studies. Asian J Pharm Sci. 2015;10(4):341–9. doi:10.1016/j.ajps.2015.03.001.

    Article  Google Scholar 

  2. Masuda T, Jitoe A. Phenylbutenoid monomers from the rhizomes of Zingiber cassumunar. Phytochem. 1995;39(2):459–61. doi:10.1016/0031-9422(94)00883-U.

    Article  CAS  Google Scholar 

  3. Han A-R, Kim M-S, Jeong YH, Lee SK, Seo E-K. Cyclooxygenase-2 inhibitory phenylbutenoids from the rhizomes of Zingiber cassumunar. Chem Pharm Bull. 2005;53(11):1466–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kaewchoothong A, Tewtrakul S, Panichayupakaranant P. Inhibitory effect of phenylbutanoid-rich Zingiber cassumunar extracts on nitric oxide production by murine macrophage-like RAW264.7 cells. Phytother Res. 2012;26(12):1789–92. doi:10.1002/ptr.4661.

    Article  CAS  PubMed  Google Scholar 

  5. Jeenapongsa R, Yoovathaworn K, Sriwatanakul KM, Pongprayoon U, Sriwatanakul K. Anti-inflammatory activity of (E)-1-(3,4-dimethoxyphenyl) butadiene from Zingiber cassumunar Roxb. J Ethnopharmacol. 2003;87(2–3):143–8. doi:10.1016/S0378-8741(03)00098-9.

    Article  CAS  PubMed  Google Scholar 

  6. Panthong A, Kanjanapothi D, Niwatananant W, Tuntiwachwuttikul P, Reutrakul V. Anti-inflammatory activity of compound D {(E)-4-(3′,4′-dimethoxyphenyl)but-3-en-2-ol} isolated from Zingiber cassumunar Roxb. Phytomedicine. 1997;4(3):207–12. doi: 10.1016/S0944-7113(97)80069-4.

  7. Kanjanapothi D, Soparat P, Panthong A, Tuntiwachwuttikul P, Reutrakul V. A uterine relaxant compound from Zingiber cassumunar. Planta Med. 1987;53:329–32.

    Article  CAS  PubMed  Google Scholar 

  8. Panthong A, Kanjanapothi D, Niwatananun V, Tuntiwachwuttikul P, Reutrakul V. Anti-inflammatory activity of compounds isolated from Zingiber cassumunar. Planta Med. 1990;56(6):655.

    Article  Google Scholar 

  9. Ozaki Y, Kawahara N, Harada M. Anti-inflammatory effect of Zingiber cassumunar Roxb. and its active principles. Chem Pharm Bull (Tokyo). 1991;39(9):2353–9.

    Article  CAS  Google Scholar 

  10. Pithayanukul P, Tubprasert J, Wuthi-Udomlert M. In vitro antimicrobial activity of Zingiber cassumunar (Plai) oil and a 5% Plai oil gel. Phytother Res. 2007;21(2):164–9. doi:10.1002/ptr.2048.

    Article  CAS  PubMed  Google Scholar 

  11. Pongprayoon U, Soontornsaratune P, Jarikasem S, Sematong T, Wasuwat S, Claeson P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part I: the essential oil. Phytomedicine. 1997;3(4):319–22. doi:10.1016/S0944-7113(97)80003-7.

    Article  CAS  PubMed  Google Scholar 

  12. Pongprayoon U, Tuchinda P, Claeson P, Sematong T, Reutrakul V, Soontornsaratune P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part II: hexane extractives. Phytomedicine. 1997;3(4):323–6. doi:10.1016/S0944-7113(97)80004-9.

    Article  CAS  PubMed  Google Scholar 

  13. Adrian CW. Structure and function of human skin. In: Adrian CW, editor. Transdermal and topical drug delivery. Illinois: Pharmaceutical Press; 2003. p. 1–25.

    Google Scholar 

  14. Rathva SR, Patel NN, Shah V, Upadhyay UM. Herbal transdermal patches: a review. Int J Drug Dis Herb Res. 2012;2(2):397–402.

    Google Scholar 

  15. Suksaeree J, Monton C, Madaka F, Chusut T, Saingam W, Pichayakorn W, et al. Formulation, physicochemical characterization, and in vitro study of chitosan/HPMC blends-based herbal blended patches. AAPS PharmSciTech. 2015;16(1):171–81. doi:10.1208/s12249-014-0216-6.

    Article  CAS  PubMed  Google Scholar 

  16. Guyot M, Fawaz F. Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int J Pharm. 2000;204(1–2):171–82. doi:10.1016/S0378-5173(00)00494-4.

    Article  CAS  PubMed  Google Scholar 

  17. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33. doi:10.1016/S0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  18. ICH. Guidance for industry; Q2B Validation of analytical procedures: methodology. Maryland: U.S. Department of Health and Human Service. 1996.

  19. Suksaeree J, Madaka F, Monton C, Sakunpak A, Chusut T, Charoonratana T. Method validation of (E)-4-(3′,4′-dimethoxyphenyl)-but-3-en-1-ol in Zingiber cassumunar Roxb. with different extraction techniques. Int J Pharm Pharm Sci. 2014;6(3):295–8.

    Google Scholar 

  20. Suksaeree J, Monton C, Charoenchai L, Madaka F, Chusut T. Determination of (E)-4-(3′, 4′-dimethoxyphenyl)-but-3-en-1-ol content in Zingiber cassumunar Roxb. (Plai) patches. Int J Pharm Pharm Sci. 2014;6(5):253–6.

    Google Scholar 

  21. Sukatta U, Rugthaworn P, Punjee P, Chidchenchey S, Keeratinijakal V. Chemical composition and physical properties of oil from plai (Zingiber Cassumunar Roxb.) obtained by hydro distillation and hexane extraction. Kasetsart J (Nat Sci). 2009;43:212–7.

    CAS  Google Scholar 

  22. Chhatri A, Bajpai J, Bajpai AK, Sandhu SS, Jain N, Biswas J. Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors. Carbohydr Polym. 2011;83(2):876–82. doi:10.1016/j.carbpol.2010.08.077.

    Article  CAS  Google Scholar 

  23. Kumar HMPN, Prabhakar MN, Prasad CV, Rao KM, Reddy TVAK, Rao KC, et al. Compatibility studies of chitosan/PVA blend in 2% aqueous acetic acid solution at 30°C. Carbohydr Polym. 2010;82(2):251–5. doi:10.1016/j.carbpol.2010.04.021.

    Article  CAS  Google Scholar 

  24. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN. Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. J Pharm Biomed Anal. 2007;43(2):549–57. doi:10.1016/j.jpba.2006.08.014.

    Article  CAS  PubMed  Google Scholar 

  25. Larsson M, Viridén A, Stading M, Larsson A. The influence of HPMC substitution pattern on solid-state properties. Carbohydr Polym. 2010;82(4):1074–81. doi:10.1016/j.carbpol.2010.06.030.

    Article  CAS  Google Scholar 

  26. Don T-M, King C-F, Chiu W-Y, Peng C-A. Preparation and characterization of chitosan-g-poly(vinyl alcohol)/poly(vinyl alcohol) blends used for the evaluation of blood-contacting compatibility. Carbohydr Polym. 2006;63(3):331–9. doi:10.1016/j.carbpol.2005.08.023.

    Article  CAS  Google Scholar 

  27. Guirguis O, Moselhey M. Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci. 2012;4:57–67. doi:10.4236/ns.2012.41009.

    CAS  Google Scholar 

  28. Raju CL, Rao JL, Reddy BCV, Veera BK. Thermal and IR studies on copper doped polyvinyl alcohol. Bull Mater Sci. 2007;30(3):215–8. doi:10.1007/s12034-007-0038-1.

    Article  CAS  Google Scholar 

  29. Brown ME. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC. In: Brown ME, editor. Introduction to thermal analysis. Netherlands: Springer; 2001. p. 55–90.

    Google Scholar 

  30. Menczel JD, Judovits L, Prime RB, Bair HE, Reading M, Swier S. Differential scanning calorimetry (DSC). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers, fundamentals and applications. New York: Wiley; 2009. p. 7–18.

    Chapter  Google Scholar 

  31. Abdelaziz M, Ghannam MM. Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys B. 2010;405(3):958–64. doi:10.1016/j.physb.2009.10.030.

    Article  CAS  Google Scholar 

  32. Limpongsa E, Umprayn K. Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system. AAPS PharmSciTech. 2008;9(2):464–70. doi:10.1208/s12249-008-9062-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo R, Du X, Zhang R, Deng L, Dong A, Zhang J. Bioadhesive film formed from a novel organic–inorganic hybrid gel for transdermal drug delivery system. Eur J Pharm Biopharm. 2011;79(3):574–83. doi:10.1016/j.ejpb.2011.06.006.

    Article  CAS  PubMed  Google Scholar 

  34. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Deproteinized natural rubber latex/hydroxypropylmethyl cellulose blending polymers for nicotine matrix films. Ind Eng Chem Res. 2012;51(25):8442–52. doi:10.1021/ie300608j.

    Article  CAS  Google Scholar 

  35. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: effect of polymer and plasticizer blends. J Membr Sci. 2012;411–412:81–90. doi:10.1016/j.memsci.2012.04.017.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Faculty of Pharmacy and the Research Institute of Rangsit University for the financial support (grant no.74/2555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jirapornchai Suksaeree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suksaeree, J., Nawathong, N., Anakkawee, R. et al. Formulation of Polyherbal Patches Based on Polyvinyl Alcohol and Hydroxypropylmethyl Cellulose: Characterization and In Vitro Evaluation. AAPS PharmSciTech 18, 2427–2436 (2017). https://doi.org/10.1208/s12249-017-0726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0726-0

KEY WORDS

Navigation