Skip to main content

Advertisement

Log in

Biopharmaceutical Assessment and Irritation Potential of Microemulsions and Conventional Systems Containing Oil from Syagrus cearensis for Topical Delivery of Amphotericin B Using Alternative Methods

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to compare the biopharmaceutical characteristics and irritation potentials of microemulsions (MEs) and conventional systems (CSs) containing oil from Syagrus cearensis for topical delivery of Amphotericin B (AmB). Pseudo-ternary phase diagrams were constructed using a water titration method to develop the MEs, and the CSs were prepared according to the classical technique of phase inversion. In the skin permeation and retention study, dermatomed pig skin without stratum corneum was used as an alternative disturbed skin model. The irritation potential was evaluated using three different methods, chorioallantoic membrane assays (HET-CAM and CAM-TBS), and bovine corneal opacity and permeability (BCOP) test. The optimized formulation (ME1) consisting of 0.1% (w/w) Amphotericin B, 9.1% (w/w) catolé oil, 81% (w/w) Smix (1:1, Tween 20 and Kolliphor EL) possessed droplet size of 31.02 ± 0.9 nm, zeta potential of −23.4 mV, and viscosity 0.63 ± 0.1 Pa.s. ME1 exhibited greater retention of AmB in to skin layers (84.79 ± 2.08 μg cm−2) than all the others formulations. In general, MEs showed higher drug release and retention than CSs and all of the formulations showed greater retentivity than permeability. Only MEs developed using Labrasol/Plurol Oleique (L/PO) as the surfactant and co-surfactant exhibited a moderate irritation potential; all other MEs and CSs were classified as non-irritants or slight irritants. The results indicate that formulations containing oil from S. cearensis are promising alternatives for the delivery of AmB targeting the treatment of cutaneous leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carvalho RF, Ribeiro IF, Miranda-Vilela AL, de Souza Filho J, Martins OP, et al. Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. ExpParasitol2013; 135: 217-222.

  2. Chudzik B, Tracz IB, Czernel G, Fiołka MJ, Borsuk G, Gagoś M. Amphotericin B–copper (II) complex as a potential agent with higher antifungal activity against Candida albicans. Eur J Pharm Sci. 2013;49:850–7.

    Article  CAS  PubMed  Google Scholar 

  3. Bose PP, Kumar P, Dwivedi MK. Hemoglobin guided nanocarrier for specific delivery of Amphotericin B to Leishmania infected macrophage. Acta Trop. 2016;158:148–59.

    Article  CAS  PubMed  Google Scholar 

  4. Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release 2015; In Press, Corrected Proof.

  5. Marku D, Wahlgren M, Rayner M, Sjöö M, Timgren A. Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharm. 2012;428:1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ramos-e-Silva M, Jacques CMC. Leishmaniasis and other Dermatozoonoses in Brazil. Clin Dermatol. 2002;20:122–34.

    Article  PubMed  Google Scholar 

  7. Ribeiro JBP, Miranda-Vilela AL, Graziani D, et al. Evaluation of the efficacy of systemic miltefosine associated with photodynamic therapy with liposomal chloroaluminium phthalocyanine in the treatment of cutaneous leishmaniasis caused by Leishmania (L.) amazonensis in C57BL/6 mice. Photodiagnosis Photodyn Ther. 2016;13:282–90.

    Article  CAS  PubMed  Google Scholar 

  8. Hepburn NC. Cutaneous leishmaniasis. Clin Exp Dermatol. 2000;25:363–70.

    Article  CAS  PubMed  Google Scholar 

  9. Launois P, Tacchini-Cottier F, Kieny MP. Cutaneous leishmaniasis: progress towards a vaccine. Expert Rev Vaccines. 2008;7:1277–87.

    Article  PubMed  Google Scholar 

  10. Solomon M, Pavlotsky F, Leshem E, Ephros M, Trau H, Schwartz E. Liposomal amphotericin B treatment of cutaneous leishmaniasis due to Leishmania tropica. J Eur Acad Dermatol Venereol. 2011;25:973–7.

    Article  CAS  PubMed  Google Scholar 

  11. Motta JO, Sampaio RN. A pilot study comparing low-dose liposomal amphotericin B with N-methyl glucamine for the treatment of American cutaneous leishmaniasis. J Eur Acad Dermatol Venereol. 2012;26:331–5.

    Article  CAS  PubMed  Google Scholar 

  12. Damasceno BPGL, Dominici VA, Urbano IA, et al. Amphotericin B microemulsion reduces toxicity and maintains the efficacy as an antifungal product. J Biomed Nanotechnol. 2012;8:290–300.

    Article  CAS  PubMed  Google Scholar 

  13. Dossat V, Combes D, Marty A. Lipase-catalysed transesterification of high oleic sunflower oil. Enzym Microb Technol. 2002;30:90–4.

    Article  CAS  Google Scholar 

  14. Nascimento VT, Moura NP, Vasconcelos MAS, Maciel MIS, Albuquerque UP. Chemical characterization of native wild plants of dry seasonal forests of the semi-arid region of northeastern Brazil. Food Res Int. 2011;44:2112–9.

    Article  Google Scholar 

  15. Noblick LR. Syagrus cearensis, a Twin-Stemmed New Palm from Brazil. Palms. 2004;48(2):70–6.

    Google Scholar 

  16. Leal LB, Sousa GD, Seixas KB, Souza PHN, Santana DP. Determination of the critical hydrophile-lipophile balance of licuri oil from Syagrus coronata: application for topical emulsions and evaluation of its hydrating function. Braz J Pharm Sci. 2013;49:167–73.

    Article  CAS  Google Scholar 

  17. Ferreira-Junior WS, Ladioc AH, Albuquerque UP. Resilience and adaptation in the use of medicinal plants with suspected anti-inflammatory activity in the Brazilian Northeast. J Ethnopharmacol 2011; 238– 252.

  18. Nóbrega AM, Alves EN, Presgrave RF, Costa RN, Delgado IF. Determination of eye irritation potential of low-irritant products: comparison of in vitro results with the in vivo draize rabbit test. Braz Arch Biol Technol. 2012;55:381–8.

    Article  Google Scholar 

  19. Scheel J, Kleber M, Kreutz J, et al. Eye irritation potential: usefulness of the HET-CAM under the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). Regul Toxicol Pharmacol. 2011;59:471–92.

    Article  CAS  PubMed  Google Scholar 

  20. Barbero AM, Frasch HF. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol in Vitro. 2009;23:1–13.

    Article  CAS  PubMed  Google Scholar 

  21. ICCVAM. Current Validation Status of In Vitro Test Methods Proposed for Identifying Eye Injury Hazard Potential of Chemicals and Products. NIH Publication 10-7553. Research Triangle Park, NC: National Institute of Environmental Health Sciences, 2010.

  22. Wilson SL, Ahearne M, Hopkinson A. An overview of current techniques for ocular toxicity testing. Toxicol. 2015;327:32–46.

    Article  CAS  Google Scholar 

  23. Yutani R, Komori Y, Takeuchi A, Teraoka R, Kitagawa S. Prominent efficiency in skin delivery of resveratrol by novel sucrose oleate microemulsion. J Pharm Pharmacol. 2016;68:46–55.

    Article  CAS  PubMed  Google Scholar 

  24. Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B: Biointerfaces. 2013;102:86–94.

    Article  CAS  PubMed  Google Scholar 

  25. Brazilian Pharmacopoeia. 5th edition, ANVISA 2010, Brasília, 150-156.

  26. Carneiro PIB, Reda SY, Carneiro EBB. 1H NMR characterization of seed oils from Rangpur Lime (Citrus limonia) and “scilian” lemom (Citrus limom). Ann Magn Reson. 2005;4:64–8.

    Google Scholar 

  27. Reda SY, Costa B, Freitas RJS. Determination of iodine value in ethylic biodiesel samples by 1H-NMR. Ann Magn Reson. 2007;6:69–75.

    Google Scholar 

  28. Butani D, Yewale C, Misra A. Amphotericin B topical microemulsion: Formulation, characterization and evaluation. Colloids Surf B: Biointerfaces. 2014;116:351–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wan T, Xu T, Pan J, et al. Microemulsion based gel for topical dermal delivery of pseudolaric acid B: In vitro and in vivo evaluation. Int J Pharm. 2015;493:111–20.

    Article  CAS  PubMed  Google Scholar 

  30. Lagarto A, Vega R, Guerra I, et al. In vitro quantitative determination of ophthalmic irritancy by the chorioallantoic membrane test with trypan blue taining as alternative to eye irritation test. Toxicol In Vitro. 2006;20:699–702.

    Article  CAS  PubMed  Google Scholar 

  31. OECD. Guidelines for the Testing of Chemicals. Test No. 437: Bovine Corneal Opacity and Permeability Test Method for Identifying Ocular Corrosives and Severe Irritants. Section 4: Health Effects. 2009.

  32. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45:89–121.

    Article  CAS  PubMed  Google Scholar 

  33. Silva AE, Barratt G, Chéron M, Egito ES. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int J Pharm. 2013;454:641–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ajazuddin AA, Khichariya A, Gupta S, Patel RJ, Giri TK, Tripathi DK. Recent expansions in an emergent novel drug delivery technology: Emulgel. J Control Release. 2013;171:122–32.

    Article  CAS  PubMed  Google Scholar 

  35. Silva JA, Santana DP, Bedor DCG, Borba VFC, Lira AAM, Egito EST. In vitro release and permeation of a diclofenac diethylamine from microemulsion gel-like. Quim Nova. 2009;32:1389–93.

    Article  Google Scholar 

  36. The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., 2001., p. 98

  37. Khan J, Alexander A, Ajazuddin, Saraf S, Saraf S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release 2013; 168: 50-60.

  38. Formariz TP, Urban MCC, Silva Júnior AA. Microemulsion and liquid crystals as drug delivery systems. Braz J Pharm Sci. 2005;41(3):301–13.

    CAS  Google Scholar 

  39. Li G, Fan Y, Li X, et al. In vitro and in vivo evaluation of a simple microemulsion formulation for propofol. Int J Pharm. 2012;425:53–61.

    Article  CAS  PubMed  Google Scholar 

  40. 40 Technical Regulation for vegetable oils, fats vegetables and vegetable cream. ANVISA Brazil 2005. RDC/ANVISA/MS N° 270.

  41. Schlupp P, Weber M, Schmidts T, Geiger K, Runkel F. Development and validation of an alternative disturbed skin model by mechanical abrasion to study drug penetration. Results Pharma Sci. 2014;4:26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ospina VE, Mantilla JC, Conde CA, Escobar P. Human skin permeation of a chloroaluminum phthalocyanine nanoemulsion for optimization of topical cutaneous leishmaniasis formulations. Rev Cienc Salud. 2014;12(2):195–211.

    Article  Google Scholar 

  43. Bolzinger MA, Briançon S, Pelletier J, Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci. 2012;17:156–65.

    Article  CAS  Google Scholar 

  44. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23.

    CAS  PubMed  Google Scholar 

  45. Butani D, Yewale C, Misra A. Topical Amphotericin B solid lipid nanoparticles: design and development. Colloids Surf B: Biointerfaces. 2016;139:17–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovana D. Sousa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, G.D., Kishishita, J., Aquino, K.A.S. et al. Biopharmaceutical Assessment and Irritation Potential of Microemulsions and Conventional Systems Containing Oil from Syagrus cearensis for Topical Delivery of Amphotericin B Using Alternative Methods. AAPS PharmSciTech 18, 1833–1842 (2017). https://doi.org/10.1208/s12249-016-0663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0663-3

Key words

Navigation