Skip to main content
Log in

The Serum-Resistant Transfection Evaluation and Long-Term Stability of Gene Delivery Dry Powder Based on Mesoporous Silica Nanoparticles and Polyethyleneimine by Freezing-Drying

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Mesoporous silica nanoparticles (MSNs) with large surface area, tunable pore size, and low toxicity can act as suitable vehicles for drug and gene delivery. An MSN/DNA/PEI complex delivery system was prepared by using MSNs to hold plasmid DNA coated with polyethyleneimine (PEI), and the dry powder formulation was produced by freeze-drying with trehalose as lyoprotectant. The MSN/DNA/PEI complexes successfully enhanced the gene expression with about 1.5-fold higher efficiency as compared with the control, and even better effects and lower toxicity were achieved at lower content of PEI. Also, this gene delivery system showed nearly sixfold higher efficiency in the serum-containing condition than the control, so further application of these vehicles in vivo is highly appreciated. Besides, the trehalose containing lyophilized formulation could hold the availability for at least 4 months of storing at room temperature, presenting the potential for industrial production and transportation of gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006;4(3):218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McCormick F. Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer. 2001;1(2):130–41.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.

    Article  CAS  PubMed  Google Scholar 

  4. De Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res. 2000;17(2):113–26.

    Article  PubMed  Google Scholar 

  5. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2012;55:329–47.

    Article  Google Scholar 

  6. Zhang X-Q, Chen M, Lam R, Xu X, Osawa E, Ho D. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano. 2009;3(9):2609–16.

    Article  CAS  PubMed  Google Scholar 

  7. Vivero‐Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6(18):1952–67.

    Article  PubMed  Google Scholar 

  8. Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–34. doi:10.1002/adma.201104763.

    Article  CAS  PubMed  Google Scholar 

  9. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 2009;5(23):2673–7. doi:10.1002/smll.200900621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4(8):4539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano. 2009;3(10):3273–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang X, Masse S, Laurent G, Hélary C, Coradin T. Impact of polyethylenimine conjugation mode on the cell transfection efficiency of silica nanovectors. Langmuir. 2015;31(40):11078–85.

    Article  CAS  PubMed  Google Scholar 

  13. Buchman YK, Lellouche E, Zigdon S, Bechor M, Michaeli S, Lellouche J-P. Silica nanoparticles and polyethyleneimine (PEI)-mediated functionalization: a new method of PEI covalent attachment for siRNA delivery applications. Bioconjug Chem. 2013;24(12):2076–87.

    Article  CAS  PubMed  Google Scholar 

  14. Shen J, Kim H-C, Su H, Wang F, Wolfram J, Kirui D, et al. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics. 2014;4(5):487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu M, Niu Y, Yang Y, Hartono SB, Yang J, Huang X, et al. An approach to prepare polyethylenimine functionalized silica-based spheres with small size for siRNA delivery. ACS Appl Mater Interfaces. 2014;6(18):15626–31.

    Article  CAS  PubMed  Google Scholar 

  16. Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev. 2001;53(3):341–58.

    Article  CAS  PubMed  Google Scholar 

  17. Yamazaki Y, Nango M, Matsuura M, Hasegawa Y, Hasegawa M, Oku N. Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine. Gene Ther. 2000;7(13):1148–55.

    Article  CAS  PubMed  Google Scholar 

  18. Wu H, Pan S, Chen M, Wu Y, Wang C, Wen Y, et al. A serum-resistant polyamidoamine-based polypeptide dendrimer for gene transfection. Biomaterials. 2011;32(6):1619–34.

    Article  CAS  PubMed  Google Scholar 

  19. Lin C, Zhong Z, Lok MC, Jiang X, Hennink WE, Feijen J, et al. Novel bioreducible poly (amido amine) s for highly efficient gene delivery. Bioconjug Chem. 2007;18(1):138–45.

    Article  CAS  PubMed  Google Scholar 

  20. Pietersz GA, Tang C-K, Apostolopoulos V. Structure and design of polycationic carriers for gene delivery. Mini-Rev Med Chem. 2006;6(12):1285–98.

    Article  CAS  PubMed  Google Scholar 

  21. Pan S, Cao D, Huang H, Yi W, Qin L, Feng M. A serum-resistant low-generation polyamidoamine with PEI 423 outer layer for gene delivery vector. Macromol Biosci. 2013;13(4):422–36.

    Article  CAS  PubMed  Google Scholar 

  22. Sameti M, Bohr G, Kumar MR, Kneuer C, Bakowsky U, Nacken M, et al. Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int J Pharm. 2003;266(1):51–60.

    Article  CAS  PubMed  Google Scholar 

  23. Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Annu Rev Physiol. 1992;54(1):579–99.

    Article  CAS  PubMed  Google Scholar 

  24. Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomed Nanotechnol Biol Med. 2012;8(2):212–20. doi:10.1016/j.nano.2011.06.002.

    Article  CAS  Google Scholar 

  25. Quan G, Pan X, Wang Z, Wu Q, Li G, Dian L, et al. Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery. J Nanobiotechnol. 2015;13(1):7.

    Article  Google Scholar 

  26. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011;121(7):2768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosenholm JM, Mamaeva V, Sahlgren C, Lindén M. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomed Nanotechnol Biol Med. 2012;7(1):111–20.

    CAS  Google Scholar 

  28. Allison SD, Anchordoquy TJ. Maintenance of nonviral vector particle size during the freezing step of the lyophilization process is insufficient for preservation of activity: insight from other structural indicators. J Pharm Sci. 2001;90(10):1445–55.

    Article  PubMed  Google Scholar 

  29. Allison SD, Molina MC, Anchordoquy TJ. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis. Biochim Biophys Acta Biomembr. 2000;1468(1):127–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the National Natural Science Foundation of China (81473155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, J., Quan, G. et al. The Serum-Resistant Transfection Evaluation and Long-Term Stability of Gene Delivery Dry Powder Based on Mesoporous Silica Nanoparticles and Polyethyleneimine by Freezing-Drying. AAPS PharmSciTech 18, 1536–1543 (2017). https://doi.org/10.1208/s12249-016-0617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0617-9

KEY WORDS

Navigation