Skip to main content
Log in

Quality by Design Empowered Development and Optimisation of Time-Controlled Pulsatile Release Platform Formulation Employing Compression Coating Technology

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The research was envisaged for development of time-controlled pulsatile release (PR) platform formulation to facilitate management of early morning chronological attacks. The development was started using prednisone as a model drug wherein core tablets were prepared using direct compression method and subsequently compression-coated with ethylcellulose (EC)-hydroxypropyl methylcellulose (HPMC) excipient blend. Initially, quality target product profile was established and risk assessment was performed using failure mode and effect analysis. In an endeavour to accomplish the objective, central composite design was employed as a design of experiment (DoE) tool. Optimised compression-coated tablet (CCT) exhibited 4–6 h lag time followed by burst release profile under variegated dissolution conditions viz. multi-media, change in apparatus/agitation and biorelevant media. Afterwards, five different drugs, i.e. methylprednisolone, diclofenac sodium, diltiazem hydrochloride, nifedipine and lornoxicam, were one-by-one incorporated into the optimised prednisone formula with replacement of former drug. Change in drug precipitated the issues like poor solubility and flow property which were respectively resolved through formulation of solid dispersion and preparation of active pharmaceutical ingredient (API) granules. Albeit, all drug CCTs exhibited desired release profile similar to prednisone CCTs. In nutshell, tour de force of research epitomised the objective of incorporating diverse drug molecules and penultimately obtaining robust release profile at varying dissolution conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364:2392–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith JD, Hou T, Ludwig DS, Rimm EB, Willett W, Hu FB, et al. Changes in intake of protein foods, carbohydrate amount and quality, and long-term weight change: results from 3 prospective cohorts. Am J Clin Nutr. 2015;101:1216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steptoe A, Kivimäki M. Stress and cardiovascular disease: an update on current knowledge. Annu Rev Public Health. 2013;34:337–54.

    Article  PubMed  Google Scholar 

  4. Stetson B, Knight HM, Mokshagundam SPL. Nutrition and lifestyle change in older adults with diabetes mellitus and metabolic syndrome. In: Bales CW, Locher JL, Saltzman E, editors. Handbook of clinical nutrition and aging. New York: Springer; 2015. p. 179–202.

    Google Scholar 

  5. Gandhi B, Mundada A, Gandhi P. Chronopharmaceutics: as a clinically relevant drug delivery system. Drug Deliv. 2011;18:1–18.

    Article  CAS  PubMed  Google Scholar 

  6. Maroni A, Zema L, Del Curto MD, Loreti G, Gazzaniga A. Oral pulsatile delivery: rationale and chronopharmaceutical formulations. Int J Pharm. 2010;398:1–8.

    Article  CAS  PubMed  Google Scholar 

  7. Patil SS, Shahiwala A. Patented pulsatile drug delivery technologies for chronotherapy. Expert Opin Ther Pat. 2014;24:845–56.

    Article  CAS  PubMed  Google Scholar 

  8. Khan Z, Pillay V, Choonara YE, du Toit LC. Drug delivery technologies for chronotherapeutic applications. Pharm Dev Technol. 2009;14:602–12.

    Article  CAS  PubMed  Google Scholar 

  9. Ohdo S. Chronotherapeutic strategy: rhythm monitoring, manipulation and disruption. Adv Drug Deliv Rev. 2010;62:859–75.

    Article  CAS  PubMed  Google Scholar 

  10. Lin S-Y, Kawashima Y. Current status and approaches to developing press-coated chronodelivery drug systems. J Control Release. 2012;157:331–53.

    Article  CAS  PubMed  Google Scholar 

  11. Litinski M, Scheer FA, Shea SA. Influence of the circadian system on disease severity. Sleep Med Clin. 2009;4:143–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Youan BBC. Chronopharmaceutics: gimmick or clinically relevant approach to drug delivery. J Control Release. 2004;98:337–53.

    Article  CAS  PubMed  Google Scholar 

  13. Patadia R, Vora C, Mittal K, Mashru R. Investigating effects of hydroxypropyl methylcellulose (HPMC) molecular weight grades on lag time of press-coated ethylcellulose tablets. Pharm Dev Technol. 2015. doi:10.3109/10837450.2015.1055767.

    Google Scholar 

  14. Patadia R, Vora C, Mittal K, Mashru R. Investigating critical effects of variegated lubricants, glidants and hydrophilic additives on lag time of press coated ethylcellulose tablets. Pharm Dev Technol. 2016;21:302–10.

    Article  CAS  PubMed  Google Scholar 

  15. Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002;96:23–43.

    Article  PubMed  Google Scholar 

  16. Maroni A, Zema L, Cerea M, Sangalli ME. Oral pulsatile drug delivery systems. Expert Opin Drug Deliv. 2005;2:855–71.

    Article  CAS  PubMed  Google Scholar 

  17. Bose S, Bogner RH. Solventless pharmaceutical coating processes: a review. Pharm Dev Technol. 2007;12:115–31.

    Article  CAS  PubMed  Google Scholar 

  18. Lin SY, Li MJ, Lin KH. Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets. AAPS PharmSciTech. 2004;5:25–9.

    Article  PubMed Central  Google Scholar 

  19. Rane AB, Gattani SG, Kadam VD, Tekade AR. Formulation and evaluation of press coated tablets for pulsatile drug delivery using hydrophilic and hydrophobic polymers. Chem Pharm Bull. 2009;57:1213–7.

    Article  CAS  PubMed  Google Scholar 

  20. Rujivipat S, Bodmeier R. Improved drug delivery to the lower intestinal tract with tablets compression-coated with enteric/nonenteric polymer powder blends. Eur J Pharm Biopharm. 2010;76:486–92.

    Article  CAS  PubMed  Google Scholar 

  21. Bussemer T, Otto I, Bodmeier R. Pulsatile drug-delivery systems. Crit Rev Ther Drug Carrier Syst. 2001;18:433–58.

    Article  CAS  PubMed  Google Scholar 

  22. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009.

    Google Scholar 

  23. Lin SY, Lin KH, Li MJ. Influence of excipients, drugs, and osmotic agent in the inner core on the time‐controlled disintegration of compression‐coated ethylcellulose tablets. J Pharm Sci. 2002;91:2040–6.

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence XY. Pharmaceutical quality by design: product and process development, understanding, and control. Pharmacol Res. 2008;25:781–91.

    Article  Google Scholar 

  25. Lawrence XY, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16:771–83.

    Article  Google Scholar 

  26. Lionberger RA, Lee SL, Lee L, Raw A, Lawrence XY. Quality by design: concepts for ANDAs. AAPS J. 2008;10:268–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmed MO, Al-Badr AA. Lornoxicam. In: Harry GB, editor. Profiles of drug substances, excipients and related methodology. London: Academic; 2011. p. 205–39.

    Google Scholar 

  28. Al‐Habet SM, Rogers HJ. Methylprednisolone pharmacokinetics after intravenous and oral administration. Br J Clin Pharmacol. 1989;27:285–90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Balfour JA, Fitton A, Barradell LB. Lornoxicam: a review of its pharmacology and therapeutic potential in the management of painful and inflammatory conditions. Drugs. 1996;51:639–57.

    Article  CAS  PubMed  Google Scholar 

  30. Buckley MM, Grant SM, Goa KL, McTavish D, Sorkin EM. Diltiazem. A reappraisal of its pharmacological properties and therapeutic use. Drugs. 1990;39:757–806.

    Article  CAS  PubMed  Google Scholar 

  31. Chuasuwan B, Binjesoh V, Polli J, Zhang H, Amidon G, Junginger H, et al. Biowaiver monographs for immediate release solid oral dosage forms: diclofenac sodium and diclofenac potassium. J Pharm Sci. 2009;98:1206–19.

    Article  CAS  PubMed  Google Scholar 

  32. Gajendran J, Krämer J, Shah VP, Langguth P, Polli J, Mehta M, et al. Biowaiver monographs for immediate-release solid oral dosage forms: nifedipine. J Pharm Sci. 2015;104:3289–98.

    Article  CAS  PubMed  Google Scholar 

  33. Scholz H. Pharmacological aspects of calcium channel blockers. Cardiovasc Drugs Ther. 1997;10:869–72.

    Article  PubMed  Google Scholar 

  34. Skjodt NM, Davies NM. Clinical pharmacokinetics of lornoxicam: a short half-life oxicam. Clin Pharmacokinet. 1998;34:421–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sorkin EM, Clissold SP, Brogden RN. Nifedipine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs. 1985;30:182–274.

    Article  CAS  PubMed  Google Scholar 

  36. Vogt M, Derendorf H, Krämer J, Junginger H, Midha K, Shah V, et al. Biowaiver monographs for immediate release solid oral dosage forms: prednisone. J Pharm Sci. 2007;96:1480–9.

    Article  CAS  PubMed  Google Scholar 

  37. British Pharmacopoeia. London: the stationery office on behalf of the Medicines and Healthcare products Regulatory Agency (MHRA); 2009.

  38. Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons. 3rd ed. London: Pharmaceutical Press; 2004.

    Google Scholar 

  39. Mazzo DJ, Obetz CL, Shuster J. Diltiazem hydrochloride. In: Harry GB, editor. Analytical profiles of drug substances and excipients. London: Academic; 1994. p. 53–98.

    Google Scholar 

  40. Tapia C, Montezuma V, Yazdani-Pedram M. Microencapsulation by spray coagulation of diltiazem HCl in calcium alginate-coated chitosan. AAPS Pharm Sci Tech. 2008;9:1198–206.

    Article  CAS  Google Scholar 

  41. Plumley C, Gorman EM, El-Gendy N, Bybee CR, Munson EJ, Berkland C. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm. 2009;369:136–43.

    Article  CAS  PubMed  Google Scholar 

  42. Hamza YE-S, Aburahma MH. Design and in vitro evaluation of novel sustained-release matrix tablets for lornoxicam based on the combination of hydrophilic matrix formers and basic pH-modifiers. Pharm Dev Technol. 2010;15:139–53.

    Article  CAS  Google Scholar 

  43. Shakeel F, Haq N, Alanazi FK, Alsarra IA. Solubility of anti-inflammatory drug lornoxicam in ten different green solvents at different temperatures. J Mol Liq. 2015;209:280–3.

    Article  CAS  Google Scholar 

  44. ICH Q8 (R2), Pharmaceutical development. ICH harmonised tripartite guideline, 2009. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf. Accessed 15 Jun 2016.

  45. ICH Q9, Quality risk management. ICH harmonised tripartite guideline, 2005. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_Guideline.pdf. Accessed 15 Jun 2016.

  46. Hiyama Y. 2009. Quality overall summary mock P2 (Description examples). March 2009. http://www.nihs.go.jp/drug/section3/English%20Mock%20QOS%20P2%20R.pdf. Accessed 15 Jun 2016.

  47. Vora C, Patadia R, Mittal K, Mashru R. Risk based approach for design and optimization of stomach specific delivery of rifampicin. Int J Pharm. 2013;455:169–81.

    Article  CAS  PubMed  Google Scholar 

  48. Vora C, Patadia R, Mittal K, Mashru R. Risk based approach for design and optimization of site specific delivery of isoniazid. J Pharm Invest. 2015;45:249–64.

    Article  CAS  Google Scholar 

  49. ICH Q2 (R1), Validation of analytical procedures: text and methodology. ICH harmonised tripartite guideline, 2005. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 15 Jun 2016.

  50. United States Pharmacopoeia (USP37-NF32). Rockville, MD: The United States Pharmacopoeial Convention Inc; 2014.

  51. Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug–excipient compatibility testing. J Pharm Biomed Anal. 2005;38:633–44.

    Article  CAS  PubMed  Google Scholar 

  52. Cohen JL, Hubert BB, Leeson LJ, Rhodes CT, Robinson JR, Roseman TJ, et al. The development of USP dissolution and drug release standards. Pharm Res. 1990;7:983–7.

    Article  CAS  PubMed  Google Scholar 

  53. Patadia R, Vora C, Mittal K, Mashru R. Dissolution criticality in developing solid oral formulations: from inception to perception. Crit Rev Ther Drug Carrier Syst. 2013;30:495–534.

    Article  CAS  PubMed  Google Scholar 

  54. ICH Q1A (R2), Stability testing of new drug substances and products. ICH harmonised tripartite guideline, 2003. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1A_R2/Step4/Q1A_R2__Guideline.pdf. Accessed 15 Jun 2016.

  55. ICH Q3C (R5), Impurities: guideline for residual solvents. ICH harmonised tripartite guideline, 2011. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/03/WC500104258.pdf. Accessed 15 Jun 2016.

  56. Hao J, Wang F, Wang X, Zhang D, Bi Y, Gao Y, et al. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur J Pharm Sci. 2012;47:497–505.

    Article  CAS  PubMed  Google Scholar 

  57. Response surface methodology. In: Lewis GA, Mathieu D, Phan-Tan-Luu R, Editors. Pharmaceutical experimental design. New York: Marcel Dekker; 1999.

  58. Process Improvement. Engineering Statistics Handbook. NIST/SEMATECH: US Department of Commerce, 2013. http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm. Accessed 15 Jun 2016.

  59. Singh B, Dahiya M, Saharan V, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part II: retrospect and prospects. Crit Rev Ther Drug Carrier Syst. 2005;22:215–94.

    Article  CAS  PubMed  Google Scholar 

  60. Singh B, Garg B, Chaturvedi SC, Arora S, Mandsaurwale R, Kapil R, et al. Formulation development of gastroretentive tablets of lamivudine using the floating‐bioadhesive potential of optimized polymer blends. J Pharm Pharmacol. 2012;64:654–69.

    Article  CAS  PubMed  Google Scholar 

  61. Singh B, Kapil R, Nandi M, Ahuja N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin Drug Deliv. 2011;8:1341–60.

    Article  CAS  PubMed  Google Scholar 

  62. Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22:27–105.

    Article  CAS  PubMed  Google Scholar 

  63. Schwartz JB, O’Connor RE, Schnaare RL. Optimization techniques in pharmaceutical formulation and processing. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. 4th ed. New York: Marcel Dekker; 2002.

    Google Scholar 

  64. Anand O, Lawrence XY, Conner DP, Davit BM. Dissolution testing for generic drugs: an FDA perspective. AAPS J. 2011;13:328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gunsel WC, Ducel RG. Compression-coated and layer tablet. In: Lieberman HA, Lachman L, Schwartz B, editors. Pharmaceutical dosage forms: tablets, vol-1. 2nd ed. New York: Marcel Dekker; 1989. p. 247–84.

    Google Scholar 

  66. Ozeki Y, Ando M, Watanabe Y, Danjo K. Evaluation of novel one-step dry-coated tablets as a platform for delayed-release tablets. J Control Release. 2004;95:51–60.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Mr. Riddhish Patadia is highly grateful to the University Grants Commission, Government of India, New Delhi for availing senior research fellowship. The authors are thankful to the industries that provided gift samples. We appreciate Metallurgical and Materials Engineering Department, Faculty of Technology and Engineering, The M.S. University of Baroda, Vadodara 390001, India for insightful assistance in PXRD study. We are also thankful to the Electrical Research and Development Association, Vadodara 390010, India for extending support for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajashree C. Mashru.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest related to this work.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

Supplementary S1

(DOCX 16.1 kb)

Supplementary S2

(DOCX 502 kb)

Supplementary S3

(DOCX 1.38 mb)

Supplementary S4

(DOCX 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patadia, R., Vora, C., Mittal, K. et al. Quality by Design Empowered Development and Optimisation of Time-Controlled Pulsatile Release Platform Formulation Employing Compression Coating Technology. AAPS PharmSciTech 18, 1213–1227 (2017). https://doi.org/10.1208/s12249-016-0590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0590-3

KEY WORDS

Navigation