Skip to main content

Advertisement

Log in

Enhanced Anti-Inflammatory Efficacy Through Targeting to Macrophages: Synthesis and In Vitro Evaluation of Folate-Glycine-Celecoxib

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

As an effective COX-2 inhibitor, celecoxib is widely used in anti-inflammation therapy. However, it may cause cardiovascular risks and renal adverse effects. In the present study, we aimed to construct a celecoxib prodrug with enhanced anti-inflammatory efficacy and reduced adverse effects using folate in order to target activated macrophages. Folate-glycine-celecoxib was synthesized and identified by 1H-NMR, MS, and FTIR analyses. The cytotoxicity of folate-glycine-celecoxib was tested on murine macrophage cells (RAW264.7) using thiazolyl blue tetrazolium bromide. Cellular uptake studies were employed to determine targeting ability toward folate receptors via flow cytometry and confocal microscopy. Anti-inflammatory efficacy of folate-glycine-celecoxib was investigated by measuring the concentration of LPS-induced nitric oxide (NO). Folate-glycine-celecoxib exhibited lower cytotoxicity than conventional celecoxib, and this conjugate could be targetedly transported into RAW264.7 cells through binding with folate receptors on cell surface. Through targeting to RAW264.7 cells, folate-glycine-celecoxib exhibited better effects than equimolar celecoxib in NO inhibition, suggesting greater anti-inflammatory activity. These findings demonstrated that the prodrug folate-glycine-celecoxib had potential to treat inflammatory disease with low cytotoxicity and high targeting ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Silverstein FE, Faich G, Goldstein JL, Simon LS, Pincus T, Whelton A, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. JAMA. 2000;284(10):1247–55.

    Article  CAS  PubMed  Google Scholar 

  2. Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther. 2013;15 Suppl 3:S2.

    PubMed  PubMed Central  Google Scholar 

  3. Caldwell B, Aldington S, Weatherall M, Shirtcliffe P, Beasley R. Risk of cardiovascular events and celecoxib: a systematic review and meta-analysis. J R Soc Med. 2006;99(3):132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352(11):1071–80.

    Article  CAS  PubMed  Google Scholar 

  5. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA. 2001;286(8):954–9.

    Article  CAS  PubMed  Google Scholar 

  6. Bing RJ. Cyclooxygenase-2 inhibitors: is there an association with coronary or renal events? Curr Atheroscler Rep. 2003;5(2):114–7.

    Article  PubMed  Google Scholar 

  7. Cid YP, Pedrazzi V, de Sousa VP, Pierre MBR. In vitro characterization of chitosan gels for buccal delivery of celecoxib: influence of a penetration enhancer. AAPS PharmSciTech. 2012;13(1):101–11.

    Article  CAS  PubMed  Google Scholar 

  8. Petit A. In situ forming hydrogels for intra-articular delivery of celecoxib: from polymer design to in vivo studies. 2014.

  9. Dong J, Jiang D, Wang Z, Wu G, Miao L, Huang L. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int J Pharm. 2013;441(1):285–90.

    Article  CAS  PubMed  Google Scholar 

  10. Thakkar H, Sharma RK, Murthy R. Enhanced retention of celecoxib-loaded solid lipid nanoparticles after intra-articular administration. Drugs R&D. 2007;8(5):275–85.

    Article  CAS  Google Scholar 

  11. Thakkar H, Sharma RK, Mishra A, Chuttani K, Murthy R. Efficacy of chitosan microspheres for controlled intra-articular delivery of celecoxib in inflamed joints. J Pharm Pharmacol. 2004;56(9):1091–9.

    Article  CAS  PubMed  Google Scholar 

  12. Charalambous C, Tryfonidis M, Sadiq S, Hirst P, Paul A. Septic arthritis following intra-articular steroid injection of the knee—a survey of current practice regarding antiseptic technique used during intra-articular steroid injection of the knee. Clin Rheumatol. 2003;22(6):386–90.

    Article  CAS  PubMed  Google Scholar 

  13. Von Essen R, Savolainen H. Bacterial infection following intra-articular injection: a brief review. Scand J Rheumatol. 1989;18(1):7–12.

    Article  Google Scholar 

  14. Szabó G, Fischer J, Kis-Varga Á, Gyires K. New celecoxib derivatives as anti-inflammatory agents. J Med Chem. 2007;51(1):142–7.

    Article  PubMed  Google Scholar 

  15. Varghese B, Vlashi E, Xia W, Ayala Lopez W, Paulos CM, Reddy J, et al. Folate receptor-β in activated macrophages: ligand binding and receptor recycling kinetics. Mol Pharm. 2014;11(10):3609–16.

    Article  CAS  PubMed  Google Scholar 

  16. Van Der Heijden JW, Oerlemans R, Dijkmans BA, Qi H, Laken CJ, Lems WF, et al. Folate receptor β as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum. 2009;60(1):12–21.

    Article  PubMed  Google Scholar 

  17. Lu Y, Stinnette TW, Westrick E, Klein PJ, Gehrke MA, Cross VA, et al. Treatment of experimental adjuvant arthritis with a novel folate receptor-targeted folic acid-aminopterin conjugate. Arthritis Res Ther. 2011;13(2):R56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  19. Danks L, Sabokbar A, Gundle R, Athanasou N. Synovial macrophage-osteoclast differentiation in inflammatory arthritis. Ann Rheum Dis. 2002;61(10):916–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500(7463):486–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 2000;41(2):147–62.

    Article  CAS  PubMed  Google Scholar 

  22. Hattori Y, Sakaguchi M, Maitani Y. Folate-linked lipid-based nanoparticles deliver a NF. KAPPA. B decoy into activated murine macrophage-like RAW264. 7 cells. Biol Pharm Bull. 2006;29(7):1516–20.

    Article  CAS  PubMed  Google Scholar 

  23. Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials. 2007;28(3):504–12.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 2011;63(9):2671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paulos CM, Turk MJ, Breur GJ, Low PS. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev. 2004;56(8):1205–17.

    Article  CAS  PubMed  Google Scholar 

  26. Lohade AA, Jain RR, Iyer K, Roy SK, Shimpi HH, Pawar Y, et al. A novel folate-targeted nanoliposomal system of doxorubicin for cancer targeting. AAPS PharmSciTech. 2015:1-14.

  27. Beidokhti HRN, Ghaffarzadegan R, Mirzakhanlouei S, Ghazizadeh L, Dorkoosh FA. Preparation, characterization, and optimization of folic acid-chitosan-methotrexate core-shell nanoparticles by box-behnken design for tumor-targeted drug delivery. AAPS PharmSciTech. 2016:1-15.

  28. Ladino CA, Chari RV, Bourret LA, Kedersha NL, Goldmacher VS. Folate-maytansinoids: target-selective drugs of low molecular weight. Int J Cancer. 1997;73(6):859–64.

    Article  CAS  PubMed  Google Scholar 

  29. Lee Y, Jung EH, Kim H, Yoon J-H, Kim D-D, Jung Y. Preparation and in vitro evaluation of celecoxib-amino acid conjugates as a colon specific prodrug. J Pharm Investig. 2012;42(3):115–20.

    Article  CAS  Google Scholar 

  30. Wang S, Luo J, Lantrip DA, Waters DJ, Mathias CJ, Green MA, et al. Design and synthesis of [111In] DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem. 1997;8(5):673–9.

    Article  CAS  PubMed  Google Scholar 

  31. Satyam A. Design and synthesis of releasable folate—drug conjugates using a novel heterobifunctional disulfide-containing linker. Bioorg Med Chem Lett. 2008;18(11):3196–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Lee SH, Feng S-S. Folate-decorated poly (lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials. 2007;28(10):1889–99.

    Article  PubMed  Google Scholar 

  33. Zhang J, Rana S, Srivastava R, Misra R. On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater. 2008;4(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chawla G, Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK. Characterization of solid-state forms of celecoxib. Eur J Pharm Sci. 2003;20(3):305–17.

    Article  CAS  PubMed  Google Scholar 

  35. Xia W, Low PS. Folate-targeted therapies for cancer. J Med Chem. 2010;53(19):6811–24.

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Lee RJ, Mathias CJ, Green MA, Low PS. Synthesis, purification, and tumor cell uptake of 67Ga-deferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjug Chem. 1996;7(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  37. Shin YK, Park JS, Kim HS, Jun HJ, Kim GE, Suh CO, et al. Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2–dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res. 2005;65(20):9501–9.

    Article  CAS  PubMed  Google Scholar 

  38. Grösch S, Tegeder I, Niederberger E, Bräutigam L, Geisslinger G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J. 2001;15(14):2742–4.

    PubMed  Google Scholar 

  39. Sobolewski C, Rhim J, Legrand N, Muller F, Cerella C, Mack F, et al. 2, 5-dimethyl-celecoxib inhibits cell cycle progression and induces apoptosis in human leukemia cells. J Pharmacol Exp Ther. 2015;355(2):308–28.

    Article  PubMed  Google Scholar 

  40. Sade A, Tuncay S, Cimen I, Severcan F, Banerjee S. Celecoxib reduces fluidity and decreases metastatic potential of colon cancer cell lines irrespective of COX-2 expression. Biosci Rep. 2012;32(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  41. Tomisato W, Tanaka K-I, Katsu T, Kakuta H, Sasaki K, Tsutsumi S, et al. Membrane permeabilization by non-steroidal anti-inflammatory drugs. Biochem Biophys Res Commun. 2004;323(3):1032–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Key Laboratory of Drug Targeting and Drug Delivery Systems for the kindly provision of RAW264.7 cells. This research was financially supported by the National Natural Science Foundation of China (no. 81373338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongning Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xiao, Y. & Yin, Z. Enhanced Anti-Inflammatory Efficacy Through Targeting to Macrophages: Synthesis and In Vitro Evaluation of Folate-Glycine-Celecoxib. AAPS PharmSciTech 18, 729–737 (2017). https://doi.org/10.1208/s12249-016-0556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0556-5

KEY WORDS

Navigation