Skip to main content

Advertisement

Log in

Preparation of Effective and Safe Gene Carriers by Grafting Alkyl Chains to Generation 5 Polypropyleneimine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Gene therapy is a novel method to treat a variety of diseases including genetic disorders and cancer. Nonviral gene carriers have now gained considerable attention as gene carrier systems. Polyamidoamine (PAMAM) and polypropyleneimine (PPI) are the two most widely used denderimers in gene delivery studies. The aim of the current study was to investigate the effects of modification of generation 5 polypropyleneimine (G5 PPI) dendrimers with alkanoate groups as hydrophobic moieties on DNA transfection and cytotoxicity. Six, 10, and 16 carbon derivatives of bromoalkanoic acids were conjugated onto PPI with 10%, 30%, and 50% of surface amine grafting. Ethidium bromide exclusion assay results proved the ability of modified carriers to condense DNA. Transfection assay showed higher DNA delivery potential for 30% and 50% grafting with decanoate moieties compared to native G5 PPI and SuperfectTM. 3-(4,5-Dimethylthiazol-2-yl)-2,5-di phenyltetrazolium bromide (MTT) and apoptosis experiments showed lower toxicity for modified carriers compared to unmodified PPI. The hemolytic effect of grafted carriers was not significantly different from G5 PPI. Size and zeta potential measurements revealed that polyplex size was less than 200 nm and electrical charges were in the range 14–25 mV. The hydrophobic modifications improved transfection activity and toxicity of G5 PPI without negatively affecting hemocompatibility. These modified carriers are therefore promising candidates for further in vivo investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  2. Li SD, Huang L. Non-viral is superior to viral gene delivery. J Control Release. 2007;123(3):181–3.

    Article  CAS  PubMed  Google Scholar 

  3. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4(7):581–93.

    Article  CAS  PubMed  Google Scholar 

  4. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17(1):117–32.

    Article  CAS  Google Scholar 

  5. Choi YJ, Kang SJ, Kim YJ, Y-b L, Chung HW. Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells. Drug Chem Toxicol. 2010;33(4):357–66.

    Article  CAS  PubMed  Google Scholar 

  6. Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57(15):2177–202.

    Article  PubMed  Google Scholar 

  7. Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2012;64:102–15.

    Article  Google Scholar 

  8. Kim T-I, Baek J-U, Zhe Bai C, Park J-S. Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials. 2007;28(11):2061–7.

    Article  CAS  PubMed  Google Scholar 

  9. Tziveleka L-A, Psarra A-MG, Tsiourvas D, Paleos CM. Synthesis and characterization of guanidinylated poly (propylene imine) dendrimers as gene transfection agents. J Control Release. 2007;117(1):137–46.

    Article  CAS  PubMed  Google Scholar 

  10. Russ V, Gunther M, Halama A, Ogris M, Wagner E. Oligoethylenimine-grafted polypropylenimine dendrimers as degradable and biocompatible synthetic vectors for gene delivery. J Control Release. 2008;132(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  11. Schatzlein AG, Zinselmeyer BH, Elouzi A, Dufes C, Chim YT, Roberts CJ, et al. Preferential liver gene expression with polypropylenimine dendrimers. J Control Release. 2005;101(1–3):247–58.

    Article  CAS  PubMed  Google Scholar 

  12. Koppu S, Oh YJ, Edrada-Ebel R, Blatchford DR, Tetley L, Tate RJ, et al. Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. J Control Release. 2010;143(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  13. Kesharwani P, Tekade RK, Gajbhiye V, Jain K, Jain NK. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine. 2011;7(3):295–304.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Z, Zhang Z, Zhou C, Jiao Y. Hydrophobic modifications of cationic polymers for gene delivery. Prog Polym Sci. 2010;35(9):1144–62.

    Article  CAS  Google Scholar 

  15. Santos JL, Oliveira H, Pandita D, Rodrigues J, Pego AP, Granja PL, et al. Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. J Control Release. 2010;144(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  16. Doody AM, Korley JN, Dang KP, Zawaneh PN, Putnam D. Characterizing the structure/function parameter space of hydrocarbon-conjugated branched polyethylenimine for DNA delivery in vitro. J Control Release. 2006;116(2):227–37.

    Article  CAS  PubMed  Google Scholar 

  17. Nimesh S, Aggarwal A, Kumar P, Singh Y, Gupta KC, Chandra R. Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. Int J Pharm. 2007;337(1–2):265–74.

    Article  CAS  PubMed  Google Scholar 

  18. Gabrielson NP, Pack DW. Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules. 2006;7(8):2427–35.

    Article  CAS  PubMed  Google Scholar 

  19. Dehshahri A, Oskuee RK, Shier WT, Hatefi A, Ramezani M. Gene transfer efficiency of high primary amine content, hydrophobic, alkyl-oligoamine derivatives of polyethylenimine. Biomaterials. 2009;30(25):4187–94.

    Article  CAS  PubMed  Google Scholar 

  20. Oskuee RK, Dehshahri A, Shier WT, Ramezani M. Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. J Gene Med. 2009;11(10):921–32.

    Article  CAS  PubMed  Google Scholar 

  21. Hashemi M, Sahraie HF, Farzad SA, Parhiz H, Ramezani M. Gene transfer enhancement by alkylcarboxylation of poly(propylenimine). Nanomed J. 2013;1(1):55–62.

    Google Scholar 

  22. Snyder SL, Sobocinski PZ. An improved 2, 4, 6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem. 1975;64(1):284–8.

    Article  CAS  PubMed  Google Scholar 

  23. Okuda T, Sugiyama A, Niidome T, Aoyagi H. Characters of dendritic poly(l-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials. 2004;25(3):537–44.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Janzen J, Brooks DE. Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells. Biomaterials. 2010;31(12):3364–73.

    Article  CAS  PubMed  Google Scholar 

  25. Incani V, Tunis E, Clements BA, Olson C, Kucharski C, Lavasanifar A, et al. Palmitic acid substitution on cationic polymers for effective delivery of plasmid DNA to bone marrow stromal cells. J Biomed Mater Res A. 2007;81(2):493–504.

    Article  PubMed  Google Scholar 

  26. Oskuee RK, Philipp A, Dehshahri A, Wagner E, Ramezani M. The impact of carboxyalkylation of branched polyethylenimine on effectiveness in small interfering RNA delivery. J Gene Med. 2010;12(9):729–38.24.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas M, Klibanov AM. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A. 2002;99(23):14640–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–31.

    Article  CAS  PubMed  Google Scholar 

  29. Rejman J, Oberle V, Zuhorn I, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Alshamsan A, Haddadi A, Incani V, Samuel J, Lavasanifar A, Uludag H. Formulation and delivery of siRNA by oleic acid and stearic acid modified polyethylenimine. Mol Pharm. 2009;6(1):121–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ramezani.

Additional information

Ahad Mokhtarzadeh and Seyed Meghdad Tabatabai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Parhiz, H., Mokhtarzadeh, A. et al. Preparation of Effective and Safe Gene Carriers by Grafting Alkyl Chains to Generation 5 Polypropyleneimine. AAPS PharmSciTech 16, 1002–1012 (2015). https://doi.org/10.1208/s12249-015-0284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0284-2

KEY WORDS

Navigation