Skip to main content
Log in

Roller Compaction of Hydrophilic Extended Release Tablets—Combined Effects of Processing Variables and Drug/Matrix Former Particle Size

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Lapidus H, Lordi NG. Some factors affecting the release of a water-soluble drug from a compressed hydrophilic matrix. J Pharm Sci. 1966;55:840–3. doi:10.1002/jps.2600550818.

    Article  CAS  PubMed  Google Scholar 

  2. Alderman DA. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Technol Prod. 1984;5:1–9.

    CAS  Google Scholar 

  3. Larsson A, Abrahmsén-Alami S, Juppo A. Oral extended-release formulations. In: Gad S C, editors. Pharmaceutical manufacturing handbook: production and processes. John Wiley & Sons Inc; 2008. p. 1191–222.

  4. Kleinebudde P. Roll compaction/dry granulation: pharmaceutical applications. Eur J Pharm Biopharm. 2004;58:317–26. doi:10.1016/j.ejpb.2004.04.014.

    Article  CAS  PubMed  Google Scholar 

  5. Augsburger LL, Vuppala MK. In: Parikh DM, editor. Theory of granulation. Book: handbook of pharmaceutical granulation technology, 2nd ed. New York: Marcel Dekker Inc; 1997. p. 7–24.

    Google Scholar 

  6. Leuenberger H. New trends in the production of pharmaceutical granules: batch versus continuous processing. Eur J Pharm Biopharm. 2001;52:289–96. doi:10.1016/S0939-6411(01)00199-0.

    Article  CAS  PubMed  Google Scholar 

  7. Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. J Pharm Pharmacol. 2005;57:533–46. doi:10.1211/0022357055957.

    Article  CAS  PubMed  Google Scholar 

  8. Herder J, Adolfsson Å, Larsson A. Initial studies of water granulation of eight grades of hypromellose (HPMC). Int J Pharm. 2006;313:57–65. doi:10.1016/j.ijpharm.2006.01.024.

    Article  CAS  PubMed  Google Scholar 

  9. Am Ende MT, Moses SK, Carella AJ, Gadkari RA, Graul TW, Otano AL. Improving the content uniformity of a low-dose tablet formulation through roller compaction optimization. Pharm Dev Technol. 2007;12:391–404. doi:10.1080/10837450701369253.

    Article  CAS  PubMed  Google Scholar 

  10. Sheskey PJ, Hendren J. The effects of roll compaction equipment variables, granulation technique, and HPMC polymer level on a controlled-release matrix model drug formulation. Pharm Technol. 1999;23:90–106.

    CAS  Google Scholar 

  11. Saravanan M, Sri Nataraj K, Ganesh KS. Hydroxypropyl methylcellulose based cephalexin extended release tablets: influence of tablet formulation, hardness and storage on invitro release kinetics. Chem Pharm Bull. 2003;51:978–83. doi:10.1248/cpb.51.978.

    Article  CAS  PubMed  Google Scholar 

  12. Hariharan M, Wowchuk C, Nkansah P, Gupta VK. Effect of formulation composition on the properties of controlled release tablets prepared by roller compaction. Drug Dev Ind Pharm. 2004;30:565–72. doi:10.1081/DDC-120037487.

    Article  CAS  PubMed  Google Scholar 

  13. Malkowska S, Khan K. Effect of re-compression on the properties of tablets preprared by dry granulation. Drug Dev Ind Pharm. 1983;9:331–47. doi:10.3109/03639048309044678.

    Article  CAS  Google Scholar 

  14. Sun C, Himmelspach MW. Reduced tabletability of roller compacted granules as a result of granule size enlargement. J Pharm Sci. 2006;95:200–6. doi:10.1002/jps.20531.

    Article  CAS  PubMed  Google Scholar 

  15. Shaw LR, Irwin WJ, Grattan TJ, Conway BR. The effect of selected water-soluble excipients on the dissolution of paracetamol and ibuprofen. Drug Dev Ind Pharm. 2005;31:515–25. doi:10.1080/03639040500215784.

    Article  CAS  PubMed  Google Scholar 

  16. Gupta A, Peck GE, Miller RW, Morris KR. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules. J Pharm Sci. 2005;94:2314–26. doi:10.1002/jps.20414.

    Article  CAS  PubMed  Google Scholar 

  17. Rowe RC, Roberts RJ. In: Alderborn G, Nyström C, editors. Mechanical properties in pharmaceutical powder compaction technology. New York: Marcel Dekker; 1996. p. 283–322.

    Google Scholar 

  18. Nokhodchi A, Rubinstein MH, Larhrib H, Guyot JC. The effect of moisture on the properties of ibuprofen tablets. Int J Pharm. 1995;118:191–7. doi:10.1016/0378-5173(94)00354-8.

    Article  CAS  Google Scholar 

  19. Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S. Design of experiments: principles and applications. 3rd ed. Umeå: MKS Umetrics AB; 2008.

    Google Scholar 

  20. Teng Y, Qiu Z, Wen H. Systematical approach of formulation and process development using roller compaction. Eur J Pharm Biopharm. 2009;73:219–29. doi:10.1016/j.ejpb.2009.04.008.

    Article  CAS  PubMed  Google Scholar 

  21. Thalberg K, Lindholm D, Axelsson A. Comparison of different flowability tests for powders for inhalation. Powder Technol. 2004;146:206–13. doi:10.1016/j.powtec.2004.08.003.

    Article  CAS  Google Scholar 

  22. Cao X, Leyva N, Anderson SR, Hancock BC. Use of prediction methods to estimate true density of active pharmaceutical ingredients. Int J Pharm. 2008;355:231–7. doi:10.1016/j.ijpharm.2007.12.012.

    Article  CAS  PubMed  Google Scholar 

  23. Hancock BC, Colvin JT, Mullarney MP, Zinchuk AV. The relative densities of pharmaceutical powders, blends, dry granulations, and immediate-release tablets. Pharm Technol. 2003;27:64–80.

    CAS  Google Scholar 

  24. Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 5th ed. USA: Pharmaceutical Press; 2006.

    Google Scholar 

  25. Pitt KG, Newton MJ, Stanley P. Tensile fracture of doubly-convex cylindrical discs under diametral loading. J Mater Sci. 1988;23:2723–8. doi:10.1007/BF00547442.

    Article  Google Scholar 

  26. Fell JT, Newton JM. Determination of tablet strength by the diametrical compression test. J Pharm Sci. 1970;59:688–91. doi:10.1002/jps.2600590523.

    Article  CAS  PubMed  Google Scholar 

  27. Souihi N, Dumarey M, Wikström H, Tajarobi P, Fransson M, Svensson O, et al. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction. Int J Pharm. 2013;477:47–61. doi:10.1016/j.ijpharm.2013.02.036.

    Article  Google Scholar 

  28. Herting MG, Kleinebudde P. Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation. Eur J Pharm Biopharm. 2008;70:372–9. doi:10.1016/j.ejpb.2008.04.003.

    Article  CAS  PubMed  Google Scholar 

  29. Prescott JK, Barnum RA. On powder flowability. Pharm Technol. 2000;24:60–85.

    CAS  Google Scholar 

  30. McKenna A, McCafferty D. Effect of particle size on the compaction mechanism and tensile strength of tablets. J Pharm Pharmacol. 1982;34:347–51. doi:10.1111/j.2042-7158.1982.tb04727.x.

    Article  CAS  PubMed  Google Scholar 

  31. Nokhodchi A, Rubinstein MH, Ford JL. The effect of particle size and viscosity grade on the compaction properties of hydroxypropylmethylcellulose 2208. Int J Pharm. 1995;126:189–97. doi:10.1016/0378-5173(95)04122-2.

    Article  CAS  Google Scholar 

  32. Bacher C, Olsen PM, Bertelsen P, Sonnergaard JM. Compressibility and compactibility of granules produced by wet and dry granulation. Int J Pharm. 2008;358:69–74. doi:10.1016/j.ijpharm.2008.02.013.

    Article  CAS  PubMed  Google Scholar 

  33. Wikberg M, Alderborn G. Compression characteristics of granulated materials: VI. pore size distributions, assessed by mercury penetration, of compacts of two lactose granulations with different fragmentation propensities. Int J Pharm. 1992;84:191–5.

    Article  CAS  Google Scholar 

  34. Wu CY, Hung WL, Miguélez-Morán AM, Gururajan B, Seville JPK. Roller compaction of moist pharmaceutical powders. Int J Pharm. 2010;391:90–7. doi:10.1016/j.ijpharm.2010.02.022.

    Article  CAS  PubMed  Google Scholar 

  35. Weyenberg W, Vermeire A, Vandervoort J, Remon JP, Ludwig A. Effects of roller compaction settings on the preparation of bioadhesive granules and ocular minitablets. Eur J Pharm Biopharm. 2005;59:527–36. doi:10.1016/j.ejpb.2004.09.012.

    Article  CAS  PubMed  Google Scholar 

  36. Juppo A. Relationship between breaking force and pore structure of lactose, glucose and mannitol tablets. Int J Pharm. 1996;127:95–102. doi:10.1016/0378-5173(95)04203-2.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge Lars Johnson (AZ) for his assistance with the permeability tests, Mervi Lindman (University of Helsinki) for taking SEM images of granules and Pirjo Tajarobi (AZ) for providing particle size data for paracetamol. HPMC DC Gen I was kindly supplied by Dow Pharma and Food Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Abrahmsén-Alami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiman, J., Tajarobi, F., Gururajan, B. et al. Roller Compaction of Hydrophilic Extended Release Tablets—Combined Effects of Processing Variables and Drug/Matrix Former Particle Size. AAPS PharmSciTech 16, 267–277 (2015). https://doi.org/10.1208/s12249-014-0219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0219-3

KEY WORDS

Navigation