Skip to main content

Advertisement

Log in

Targeted Gene Delivery to MCF-7 Cells Using Peptide-Conjugated Polyethylenimine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Specific and effective delivery of drugs and genes to cancer cells are the major issues in successful cancer treatment. Recently, targeted cancer gene therapy has been emerged as a main technology for the treatment of different types of cancers. Among various synthetic carriers, polyethylenimine is one of the most well-known polymers for gene delivery. In this study, we conjugated phage-derived peptide (DMPGTVLP) to polyethylenimine (10 kDa) via disulfide bonds for targeted gene delivery into breast adenocarcinoma cells (MCF-7). As negative-control cells, we used non-related hepatocellular carcinoma cells (HepG2). Peptide-conjugated polyplex exhibited low cytotoxicity and significantly increased the transfection efficiency in comparison with unmodified polyethylenimine. Therefore, the peptide-modified vector can be used as a good targeting agent for gene or drug delivery into breast adenocarcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2008;109:259–302.

    Article  Google Scholar 

  2. Scanlon KJ. Cancer gene therapy: challenges and opportunities. Anticancer Res. 2004;24:501–4.

    CAS  PubMed  Google Scholar 

  3. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol. 1997;15:647–52.

    Article  CAS  PubMed  Google Scholar 

  4. DE Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res. 2000;17:113–26.

    Article  PubMed  Google Scholar 

  5. Martin B, Sainlos M, Aissaoui A, Oudrhiri N, Hauchecorne M, Vigneron J-P, et al. The design of cationic lipids for gene delivery. Curr Pharm Des. 2005;11:375–94.

    Article  CAS  PubMed  Google Scholar 

  6. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide‐based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31:2717–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dufes C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–202.

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Huang L. Nonviral gene therapy: promises and challenges. Gene Ther. 2000;7:31–4.

    Article  CAS  PubMed  Google Scholar 

  9. Fischer D, Bieber T, LI Y, Elsasser H-P, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    Article  CAS  PubMed  Google Scholar 

  10. Parhiz H, Hashemi M, Hatefi A, Shier WT, Amel Farzad S, Ramezani M. Arginine-rich hydrophobic polyethylenimine: potent agent with simple components for nucleic acid delivery. Int J Biol Macromol. 2013;60:18–27.

    Article  CAS  PubMed  Google Scholar 

  11. Ahn C-H, Chae SY, Bae YH, Kim SW. Biodegradable poly (ethylenimine) for plasmid DNA delivery. J Control Release. 2002;80:273–82.

    Article  CAS  PubMed  Google Scholar 

  12. Sadeqzadeh E, Rahbarizadeh F, Ahmadvand D, Rasaee MJ, Parhamifar L, Moghimi SM. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells. J Control Release. 2011;156:85–91.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Hong H, Cai W. Tumor-targeted drug delivery with Aptamers. Curr Med Chem. 2011;18:4185–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Park IK, Lasiene J, Chou SH, Horner PJ, Pun SH. Neuron‐specific delivery of nucleic acids mediated by Tet1‐modified poly (ethylenimine). J Gene Med. 2007;9:691–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tian H, Lin L, Chen J, Chen X, Park TG, Maruyama A. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J Control Release. 2011;155:47–53.

    Article  CAS  PubMed  Google Scholar 

  16. Moffatt S, Wiehle S, Cristiano RJ. Tumor-specific gene delivery mediated by a novel peptide-polyethylenimine-DNA polyplex targeting aminopeptidase N/CD13. Hum Gene Ther. 2005;16:57–67.

    Article  CAS  PubMed  Google Scholar 

  17. Qian Y, Zha Y, Feng B, Pang Z, Zhang B, Sun X, et al. PEGylated poly (2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials. 2012;34:2117–29.

    Article  PubMed  Google Scholar 

  18. Pi Y, Zhang X, Shi J, Zhu J, Chen W, Zhang C, et al. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display. Biomaterials. 2011;32:6324–32.

    Article  CAS  PubMed  Google Scholar 

  19. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–7.

    Article  CAS  PubMed  Google Scholar 

  20. Rasmussen UB, Schreiber V, Schultz H, Mischler F, Schughart K. Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther. 2002;9:606–12.

    Article  CAS  PubMed  Google Scholar 

  21. Molek P, Strukelj B, Bratkovic T. Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules. 2011;16:857–87.

    Article  CAS  PubMed  Google Scholar 

  22. Bedi D, Musacchio T, Fagbohun OA, Gillespie JW, Deinnocentes P, Bird RC, et al. Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes. Nanomedicine: Nanotechnol Biol Med. 2011;7:315–23.

    Article  CAS  Google Scholar 

  23. Hashemi M, Parhiz B, Hatefi A, Ramezani M. Modified polyethyleneimine with histidine–lysine short peptides as gene carrier. Cancer Gene Ther. 2010;18:12–9.

    Article  PubMed  Google Scholar 

  24. Marelli UK, Rechenmacher F, Sobahi TRA, Mas-Moruno C, Kessler H. Tumor targeting via integrin ligands. Front Oncol. 2013;3:222.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Shahidi‐Hamedani N, Shier WT, Moghadam Ariaee F, Abnous K, Ramezani M. Targeted gene delivery with noncovalent electrostatic conjugates of sgc‐8c aptamer and polyethylenimine. J Gene Med. 2013;15:261–9.

    Article  PubMed  Google Scholar 

  26. Li J, Feng L, Fan L, Zha Y, Guo L, Zhang Q, et al. Targeting the brain with PEG–PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 2011;32:4943–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Carlisle RC, Bettinger T, Ogris M, Hale S, Mautner V, Seymour LW. Adenovirus hexon protein enhances nuclear delivery and increases transgene expression of polyethylenimine/plasmid DNA vectors. Mol Ther. 2001;4:473–83.

    Article  CAS  PubMed  Google Scholar 

  28. Nam HY, Nam K, Hahn HJ, Kim BH, Lim HJ, Kim HJ, et al. Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials. 2009;30:665–73.

    Article  CAS  PubMed  Google Scholar 

  29. Niidome T, Urakawa M, Takaji K, Matsuo Y, Ohmori N, Wada A, et al. Influence of lipophilic groups in cationic alpha-helical peptides on their abilities to bind with DNA and deliver genes into cells. J Pept Res. 1999;54:361–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Mashhad University of Medical Sciences, Mashhad, Iran. Additional financial support provided by the Iranian Nanotechnology Initiative is gratefully acknowledged. The results presented here were part of A. Mokhtarzadeh PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalil Abnous or Mohammad Ramezani.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Characterization of the peptide conjugates by RP-HPLC. (1) Positive peptide (PP), (2) DTT, (3) PEI-PP, (4) DTT treated PEI-PP (JPEG 45 kb)

Supplementary Figure 2

FTIR analysis of PEI 10 and PEI 10-PP vectors (JPEG 46 kb)

Supplementary Figure 3

Transfection efficiency of polyplexes prepared from plasmid DNA encoding the green fluorescent protein (GFP) and PEI 10 kDa or the peptide-conjugated PEI 10 (JPEG 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtarzadeh, A., Parhiz, H., Hashemi, M. et al. Targeted Gene Delivery to MCF-7 Cells Using Peptide-Conjugated Polyethylenimine. AAPS PharmSciTech 16, 1025–1032 (2015). https://doi.org/10.1208/s12249-014-0208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0208-6

KEY WORDS

Navigation