Skip to main content

Advertisement

Log in

Matrix Tablets: The Effect of Hydroxypropyl Methylcellulose/Anhydrous Dibasic Calcium Phosphate Ratio on the Release Rate of a Water-Soluble Drug Through the Gastrointestinal Tract I. In Vitro Tests

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Different hydroxypropyl methylcellulose (HPMC)/anhydrous dibasic calcium phosphate (ADCP) matrix tablets have been developed aiming to evaluate the influence of both components ratio in the control release of a water-soluble drug (theophylline). In order to characterise the matrix tablets, swelling, buoyancy and dissolution studies have been carried out in different aqueous media (demineralised water, progressive pH medium, simulated gastric fluid, simulated intestinal fluid and simulated colonic fluid). The HPMC/ADCP ratio has turned out to be the determinant in the matrix behaviour: the HPMC characteristic swelling behaviour was modulated, in some cases, by the ADCP characteristic acidic dissolution. When the HPMC/ADCP ratio was ≥0.69, buoyancy, continuous swelling and low theophylline dissolution rate from the matrices (H1, H2 and H3) were observed in all dissolution media. Consequently, these formulations could be adequate as gastro-retentive drug delivery systems. Additionally, HPMC/ADCP ratio ≤0.11 (H5 and H6) induces a pH-dependent drug release which could be applied to design control drug release enteric formulations (with a suitable enteric coating). Finally, a HPMC/ADCP ratio between 0.11 and 0.69 (H4) yield a gastrointestinal controlled drug release, due to its time-dependent buoyancy (7 h) and a total drug delivery in 17 h in simulated colonic fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee BJ, Ryu SG, Cui JH. Formulation and release characteristics of hydroxypropyl methylcellulose matrix tablet containing melatonin. Drug Dev Ind Pharm. 1999;25:493–501.

    Article  PubMed  CAS  Google Scholar 

  2. Sako K, Sawada T, Nakashima H, Yokohama S, Sonobe T. Influence of water soluble fillers in hydroxypropylmethylcellulose matrices on in vitro and in vivo drug release. J Control Release. 2002;81:165–72.

    Article  PubMed  CAS  Google Scholar 

  3. Ebube NK, Jones AB. Sustained release of acetaminophen from a heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers. Int J Pharm. 2004;272:19–27.

    Article  PubMed  CAS  Google Scholar 

  4. Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. J Pharm Pharmacol. 2005;57:533–46.

    Article  PubMed  CAS  Google Scholar 

  5. Sung KC, Nixon PR, Skoug JW, Ju TR, Gao P, Topp EM, Patel MV. Effect of formulation variables on drug and polymer release from HPMC-based matrix tablets. Int J Pharm. 1996;142:53–60.

    Article  CAS  Google Scholar 

  6. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technolo Today. 2000;3:198–204.

    Article  PubMed  CAS  Google Scholar 

  7. Lee PI, Peppas NA. Prediction of polymer dissolution in swellable controlled-release systems. J Control Release. 1987;6:207–15.

    Article  CAS  Google Scholar 

  8. Narasimhan B, Peppas NA. Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier. J Pharm Sci. 1997;86:297–304.

    Article  PubMed  Google Scholar 

  9. Ford JL, Rubinstein ML, Hogan JE. Propranolol hydrochloride and aminophylline release from matrix tablets containing hydroxypropylcellulose. Int J Pharm. 1985;24:339–50.

    Article  CAS  Google Scholar 

  10. Feely LC, Davis SS. The influence of polymeric excipients on drug release from Hydroxypropylmethylcellulose matrices. Int J Pharm. 1988;41:83–90.

    Article  CAS  Google Scholar 

  11. Hogan JE. Hydroxypropylmethylcellulose sustained release technology. Drug Dev Ind Pharm. 1998;15:975–99.

    Article  Google Scholar 

  12. Hardy IJ, Windberg-Baarup A, Neri C, Byway PV, Booth SW, Fitzpatrick S. Modulation of drug release kinetics from hydroxypropyl methyl cellulose matrix tablets using polyvinyl pyrrolidone. Int J Pharm. 2007;337:246–53.

    Article  PubMed  CAS  Google Scholar 

  13. Gao P, Nixon P, Skoug J. Diffusion in HPMC gels. II Prediction of drug release rates from hydrophilic matrix extended-release dosage forms. Pharm Res. 1995;12:965–71.

    Article  PubMed  CAS  Google Scholar 

  14. Williams III RO, Reynolds TD, Cabelka TD, Sykora MA, Mahaguna V. Investigation of excipient type and level on drug release from controlled release tablets containing HPMC. Pharm Dev Technol. 2002;7:181–93.

    Article  PubMed  CAS  Google Scholar 

  15. Vargas CI, Ghaly ES. Kinetic release of theophylline from hydrophilic swellable matrices. Drug Dev Ind Pharm. 1999;25:1045–50.

    Article  PubMed  CAS  Google Scholar 

  16. Jamzad S, Tutunji L, Fassihi R. Analysis of macromolecular changes and drug release from hydrophilic matrix systems. Int J Pharm. 2005;292:75–85.

    Article  PubMed  CAS  Google Scholar 

  17. Rekhi GS, Nellore RV, Hussain AS, Tillman LG, Malinowski HJ, Augsburger LL. Identification of critical formulation and processing variables for metoprolol tartrate extended-release (ER) matrix tablets. J Control Release. 1999;59:327–42.

    Article  PubMed  CAS  Google Scholar 

  18. Lotfipour F, Nokhodchi A, Saeedi M, Norouzi-Sani S, Sharbafi J, Siahi-Shadbad MR. The effect of hydrophilic and lipophilic polymers and fillers on the release rate of atenolol from HPMC matrices. Farmaco. 2004;59:819–25.

    Article  PubMed  CAS  Google Scholar 

  19. Tavakoli N, Varshosaz J, Dorkoosh F, Motaghi S, Tamaddon L. Development and evaluation of a monolithic floating drug delivery system for acyclovir. Chem Pharm Bull. 2012;60:172–7.

    Article  PubMed  CAS  Google Scholar 

  20. Chaturvedi K, Umadevi S, Vaghani S. Floating matrix dosage form for propranolol hydrochloride based on gas formation technique: development and in vitro evaluation. Sci Pharm. 2010;78:927–39.

    Article  PubMed  CAS  Google Scholar 

  21. Hu L, Li L, Yang X, Liu W, Yang J, Jia Y, Shang Ch XH. Floating matrix dosage form for dextromethorphan hydrobromide based on gas forming technique: in vitro and in vivo evaluation in healthy volunteers. Eur J Pharm Sci. 2011;42:99–105.

    Article  PubMed  CAS  Google Scholar 

  22. Abrahamsson A, Alpsten M, Bakec B, Larsson A, Sjögren J. In vitro and in vivo erosion of two different hydrophilic gel matrix tablets. Eur J Pharm Biopharm. 1998;46:69–75.

    Article  PubMed  CAS  Google Scholar 

  23. Pillay V, Fassihi R. Unconventional dissolution methodologies. J Pharm Sci. 1999;88:843–51.

    Article  PubMed  CAS  Google Scholar 

  24. Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154:2–19.

    Article  PubMed  CAS  Google Scholar 

  25. Viridén A, Larsson A, Schagerlöf H, Wittgren B. Model drug release from matrix tablets composed of HPMC with different substituent heterogeneity. Int J Pharm. 2010;401:60–7.

    Article  PubMed  Google Scholar 

  26. FDA Alert for Healthcare Professionals. Hydromorphone hydrochloride extended-release capsules (marketed as Palladone™), alcohol–palladone™ interaction, 2005.

  27. EMEA, Committee for proprietary medicinal products (CPMP). Note for guidance on quality of modified release products. A: Oral dosage forms; B: Transdermal dosage forms. London: EMEA; 1999

  28. Dow. Using dow excipients for controlled release of drugs in hydrophilic matrix systems. Midland: The Dow Chemical Company; 2006.

  29. Ruiz-Caro R, Veiga MD. Characterization and dissolution study of chitosan freeze-dried systems for drug controlled release. Molecules. 2009;14:4370–86.

    Google Scholar 

  30. The United States Pharmacopeial/The National Formulary, USP 34/NF29. Philadelphia: National Publishing; 2011.

  31. Haupt S, Zioni T, Gati I, Kleinstern J, Rubinstein A. Luminal delivery and dosing considerations of local celecoxib administration to colorectal cancer. Eur J Pharm Sci. 2006;28:204–11.

    Article  PubMed  CAS  Google Scholar 

  32. Wakerly Z, Fell JT, Attwood D, Parkins DA. In vitro evaluation of pectin-based colonic drug delivery systems. Int J Pharm. 1996;129:73–7.

    Article  CAS  Google Scholar 

  33. Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharma Tec. 1996;20:64–74.

    Google Scholar 

  34. Shah VP, Tsong Y, Sathe P, Liu J. In vitro dissolution profile comparison-statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15:889–95.

    Article  PubMed  CAS  Google Scholar 

  35. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  PubMed  CAS  Google Scholar 

  36. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;239:923–31.

    Article  Google Scholar 

  37. Hopfenberg HB. Controlled release polymeric formulations. In: Paul DR, Harris FW, editors. ACS Symposium Series 33. Washington, DC: American Chemical Society; 1976. p. 26–31.

    Google Scholar 

  38. Katzhendler I, Hofman A, Goldberger A, Friedman M. Modeling of drug release from erodible tablets. J Pharm Sci. 1997;86:110–5.

    Article  PubMed  CAS  Google Scholar 

  39. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  PubMed  CAS  Google Scholar 

  40. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  41. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–6.

    Article  CAS  Google Scholar 

  42. Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, Higaki K, Kimura T. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267:79–91.

    Article  PubMed  CAS  Google Scholar 

  43. Morton RC. Calcium phosphate dibasic dehydrate. In: Weller PJ, Sheskey PJ, Rowe RC, editors. Handbook of pharmaceutical excipients. 4th ed. London: Pharmaceutical Press; 2001. p. 96–9.

    Google Scholar 

  44. Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci. 1979;24:1073–87.

    Article  CAS  Google Scholar 

  45. Doelker E. Cellulose derivatives. In: Peppas NA, editor. Advances in polymer science, vol. 107. Berlin: Springer; 1993. p. 199–265.

    Google Scholar 

  46. Haque A, Morris ER. Thermogelation of methylcellulose. Part 1. Molecular structures and processes. Carbohydr Polym. 1993;22:161–73.

    Article  CAS  Google Scholar 

  47. Yuasa H, Nakano T, Kanaya Y. Suppression of agglomeration in fluidized bed coating I. Suppression of agglomeration by adding NaCl. Int J Pharm. 1997;158:195–201.

    Article  CAS  Google Scholar 

  48. Nakano T, Yuasa H, Kanaya Y. Suppression of agglomeration in fluidized bed coating. III. Hofmeister series in suppression of particle agglomeration. Pharm Res. 1999;16:1616–20.

    Article  PubMed  CAS  Google Scholar 

  49. Pygall SR, Kujawinski S, Timmins P, Melia CD. Mechanisms of drug release in citrate buffered HPMC matrices. Int J Pharm. 2009;370:110–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Pseidy Luz Mamani Crispin is a recipient of a predoctoral scholarship from the Agencia de Española de Cooperación Internacional y Desarrollo (Spain) to do her Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamani, P.L., Ruiz-Caro, R. & Veiga, M.D. Matrix Tablets: The Effect of Hydroxypropyl Methylcellulose/Anhydrous Dibasic Calcium Phosphate Ratio on the Release Rate of a Water-Soluble Drug Through the Gastrointestinal Tract I. In Vitro Tests. AAPS PharmSciTech 13, 1073–1083 (2012). https://doi.org/10.1208/s12249-012-9829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9829-9

Key words

Navigation