Skip to main content

Advertisement

Log in

Ligustrazine Phosphate Ethosomes for Treatment of Alzheimer’s Disease, In Vitro and in Animal Model Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In the present study, we have investigated transdermal administration of ligustrazine phosphate (LP), as an antioxidant, for the treatment of Alzheimer’s disease (AD). The LP transdermal ethosomal system was designed and characterized. Franz-type diffusion cells and confocal laser scanning microscopy were used for the in vitro permeation studies. Furthermore, the effect of LP transdermal ethosomal system on AD was evaluated in the scopolamine-induced amnesia rats by evaluating the behavioral performance in the Morris water maze test. The activities of the antioxidant enzymes and the levels of the lipid peroxidation product malondialdehyde (MDA) in the brain of rats were also determined. The results showed that both the penetration ability and the drug deposition in skin of the LP ethosomal system were significantly higher than the aqueous one. The LP transdermal ethosomal system could recover the activities of the antioxidant enzymes and the levels of MDA in the brain of the amnesic rats to the similar status of the normal rats, which was also indirectly reflected by the improvement in the behavioral performance. In conclusion, LP might offer a potential alternative therapeutic drug in the fight against AD, and ethosomes could be vesicles of choice for transdermal delivery of LP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dementia. 2007;3:186–91.

    Article  PubMed  Google Scholar 

  2. Armstrong RA. Plaques and tangles and the pathogenesis of Alzheimer’s disease. Folia Neuropathol. 2006;44:1–11.

    PubMed  CAS  Google Scholar 

  3. Portelius E, Zetterberg H, Andreasson U, Brinkmalm G, Andreasen N, Wallin A, et al. An Alzheimer’s disease-specific β-amyloid fragment signature in cerebrospinal fluid. Neurosci Lett. 2006;409:215–9.

    Article  PubMed  CAS  Google Scholar 

  4. Cummings JL. Alzheimer’s disease. N Engl J Med. 2004;351:56–7.

    Article  PubMed  CAS  Google Scholar 

  5. Cai Z, Yan Y, Sun S, Zhang J, Huang L, Yan L, et al. Upregulation of BACE1 and β-Amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer’s disease. Neurochem Res. 2009;34:1226–35.

    Article  CAS  Google Scholar 

  6. Zhu X, Raina AK, Perry G, Smith MA. Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol. 2004;3:219–26.

    Article  PubMed  CAS  Google Scholar 

  7. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  PubMed  CAS  Google Scholar 

  8. Gu F, Zhu M, Shi J, Hu Y, Zhao Z. Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett. 2008;440:44–8.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang XL, Jiang B, Li ZB, Hao S, An LJ. Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by d-galactose. Pharmacol Biochem Behav. 2007;8:64–72.

    Article  Google Scholar 

  10. Jeong EJ, Ma CJ, Lee KY, Kim SH, Sung SH, Kim YC. KD-501, a standardized extract of Scrophularia buergeriana has both cognitive-enhancing and antioxidant activities in mice given scopolamine. J Ethnopharmacol. 2009;121:98–105.

    Article  PubMed  Google Scholar 

  11. Xu H, Shi DZ. The clinical applications and pharmacologic effects of Ligustrazine. Chin J Integr Tradit West Med. 2003;23:376–7.

    Google Scholar 

  12. Zhang SJ, Wang ZT, Han LH, Chai SB. Effects of tetramethylpyrazine injection on angiogenesis and expression of VEGF mRNA in ischemic myocardium of rats with myocardial infarction. Chin J Exp Tradit Med Formulae. 2011;17:170–3.

    Google Scholar 

  13. Zhu XL, Xiong LZ, Wang Q, Liu ZG, Ma X, Zhu ZH, et al. Therapeutic time window and mechanism of tetramethylpyrazine on transient focal cerebral ischemia/reperfusion injury in rats. Neurosci Lett. 2009;449:24–7.

    Article  PubMed  CAS  Google Scholar 

  14. Fan LH, Wang KZ, Cheng B, Wang CS, Dang XQ. Anti-apoptotic and neuroprotective effects of tetramethylpyrazine following spinal cord ischemia in rabbits. BMC Neurosci. 2006;7:48–52.

    Article  PubMed  Google Scholar 

  15. Cheng XR, Zhang L, Hu JJ, Sun L, Du GH. Neuroprotective effects of tetramethylpyrazine on hydrogen peroxide-induced apoptosis in PC12 cells. Cell Biol Int. 2007;31:438–43.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao L, Wei MJ, He M, Jin WB, Zhao HS, Yao WF. The effects of tetramethylpyrazine on learning and memory abilities of mice with Alzheimer disease and its possible mechanism. Chin Pharmacol Bull. 2008;24:1088–92.

    CAS  Google Scholar 

  17. Wang L, Guo Q, Han J, Zhang Y, Chen X. Pharmacokinetics of ligustrazine in blood, brain, and liver of mice. Chin Tradit Herb Drugs. 2009;40:935–8.

    CAS  Google Scholar 

  18. Cai W, Dong SN, Lou YQ. HPLC determination of tetramethylpyrazine in human serum and its pharmacokinetic parameters. Acta Pharmaceut Sin. 1989;24:881–6.

    CAS  Google Scholar 

  19. Zeng CY, Mei QX. ADRs induced by tetramethylpyrazine: literature analysis of 30 cases. China Pharm. 2008;19:1908–10.

    Google Scholar 

  20. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.

    Article  PubMed  CAS  Google Scholar 

  21. Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech. 2007;8:191–9.

    Article  Google Scholar 

  22. Fang YP, Tsai YH, Wu PC, Huang YB. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm. 2008;356:144–52.

    Article  PubMed  CAS  Google Scholar 

  23. Mishra D, Mishra PK, Dabadghao S, Dubey V, Nahar M, Jain NK. Comparative evaluation of hepatitis B surface antigen-loaded elastic liposomes and ethosomes for human dendritic cell uptake and immune response. Nanomedicine. 2010;6:110–8.

    Article  PubMed  CAS  Google Scholar 

  24. Lopez-Pinto JM, Gonzalez-Rodriguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm. 2005;298:1–12.

    Article  PubMed  CAS  Google Scholar 

  25. Shen T, Xu H, Weng W, Zhang J. Study on the human pharmacokinetics and relative bioavailability of tetramethylpyrazine phosphate patch. Proceedings of the sixth Chinese pharmaceutical association annual meeting. 2006, Nov 9, Guangzhou, China.

  26. Sethi P, Jyoti A, Hussain E, Sharma D. Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav. 2009;93:31–9.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang LW, Al-Suwayeh SA, Hsieh PW, Fang JY. A comparison of skin delivery of ferulic acid and its derivatives: evaluation of their efficacy and safety. Int J Pharm. 2010;399:44–51.

    Article  PubMed  CAS  Google Scholar 

  28. Schenk D. Current challenges for the successful treatment and prevention of Alzheimer’s disease: treating the pathologies of the disease to change its clinical course. Alzheimer’s Dementia. 2008;4:S119–21.

    Article  PubMed  Google Scholar 

  29. Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol. 2006;545:39–50.

    Article  PubMed  CAS  Google Scholar 

  30. Dubey V, Mishra D, Jain NK. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm. 2007;67:398–405.

    Article  PubMed  CAS  Google Scholar 

  31. Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;332:60–6.

    Article  Google Scholar 

  32. Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258:141–51.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao JH, Fu JH, Wang SM, Su CH, Shan Y, Kong SJ, et al. A novel transdermal patch incorporating isosorbide dinitrate with bisoprolol: in vitro and in vivo characterization. Int J Pharm. 2007;337:88–101.

    Article  PubMed  CAS  Google Scholar 

  34. Qi X, Ackermann C, Sun D, Sheng M, Hou H. Physicochemical characterization and percutaneous delivery of 2,3,5,6-tetramethylpyrazine. Int J Pharm. 2003;253:177–83.

    Article  PubMed  CAS  Google Scholar 

  35. Chen J, Long Y, Han M, Wang T, Chen Q, Wang R. Water-soluble derivative of propolis mitigates scopolamine-induced learning and memory impairment in mice. Pharmacol Biochem Behav. 2008;90:441–6.

    Article  PubMed  CAS  Google Scholar 

  36. Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, et al. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett. 2005;374:222–6.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Fund of China (no. 30500666) and the Tsinghua—Yuyuan Medical Funds (no. 20240000529, no. 20240000548). The authors would like to thank Prof. Lei Huang (Department of Medicine, Tsinghua University, China) for providing the CLSM platform and the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Wang, Y. & Luo, G. Ligustrazine Phosphate Ethosomes for Treatment of Alzheimer’s Disease, In Vitro and in Animal Model Studies. AAPS PharmSciTech 13, 485–492 (2012). https://doi.org/10.1208/s12249-012-9767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9767-6

KEY WORDS

Navigation