Skip to main content
Log in

Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the GreysWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lewis DF. 57 varieties: the human cytochromes P450. Pharmacogenomics. 2004;5(3):305–18. doi:10.1517/phgs.5.3.305.29827.

    Article  CAS  PubMed  Google Scholar 

  2. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32. doi:10.1016/j.biocel.2013.02.019.

    Article  CAS  PubMed  Google Scholar 

  3. Mackenzie PI, Hu DG, Gardner-Stephen DA. The regulation of UDP-glucuronosyltransferase genes by tissue-specific and ligand-activated transcription factors. Drug Metab Rev. 2010;42(1):99–109. doi:10.3109/03602530903209544.

    Article  CAS  PubMed  Google Scholar 

  4. Latchman DS. Transcription factors: an overview. Int J Biochem Cell Biol. 1997;29(12):1305–12.

    Article  CAS  PubMed  Google Scholar 

  5. Karin M. Too many transcription factors: positive and negative interactions. New Biol. 1990;2(2):126–31.

    CAS  PubMed  Google Scholar 

  6. van Nimwegen E. Scaling laws in the functional content of genomes. Trends Genet. 2003;19(9):479–84. doi:10.1016/S0168-9525(03)00203-8.

    Article  PubMed  Google Scholar 

  7. Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev. 2011;62(13):1238–49. doi:10.1016/j.addr.2010.08.006.

    Article  Google Scholar 

  8. Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab. 2002;3(5):481–90.

    Article  CAS  PubMed  Google Scholar 

  9. Liu W, Ramirez J, Gamazon ER, Mirkov S, Chen P, Wu K, et al. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver. Hum Mol Genet. 2014;23(20):5558–69. doi:10.1093/hmg/ddu268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamba V, Jia B, Liang F. STAT5A and STAT5B have opposite correlations with drug response gene expression. Biochem Biophys Res Commun. 2016. doi:10.1016/j.bbrc.2016.06.011.

    PubMed  Google Scholar 

  11. Schroder A, Wollnik J, Wrzodek C, Drager A, Bonin M, Burk O, et al. Inferring statin-induced gene regulatory relationships in primary human hepatocytes. Bioinformatics. 2011;27(18):2473–7. doi:10.1093/bioinformatics/btr416.

    PubMed  Google Scholar 

  12. Siest G, Jeannesson E, Marteau JB, Samara A, Marie B, Pfister M, et al. Transcription factor and drug-metabolizing enzyme gene expression in lymphocytes from healthy human subjects. Drug Metab Dispos. 2008;36(1):182–9. doi:10.1124/dmd.107.017228.

    Article  CAS  PubMed  Google Scholar 

  13. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi:10.1186/1471-2105-9-559.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Baddoo M, Han C, Strong MJ, Cvitanovic J, Moroz K, et al. Gene network analysis reveals a novel 22-gene signature of carbon metabolism in hepatocellular carcinoma. Oncotarget. 2016. doi:10.18632/oncotarget.10249.

    Google Scholar 

  15. Chen YC, Guo YF, He H, Lin X, Wang XF, Zhou R, et al. Integrative analysis of genomics and transcriptome data to identify potential functional genes of BMDs in females. J Bone Miner Res. 2016;31(5):1041–9. doi:10.1002/jbmr.2781.

    Article  CAS  PubMed  Google Scholar 

  16. Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W, et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell. 2015;161(5):1175–86. doi:10.1016/j.cell.2015.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filteau M, Pavey SA, St-Cyr J, Bernatchez L. Gene coexpression networks reveal key drivers of phenotypic divergence in lake whitefish. Mol Biol Evol. 2013;30(6):1384–96. doi:10.1093/molbev/mst053.

    Article  CAS  PubMed  Google Scholar 

  18. Rosen EY, Wexler EM, Versano R, Coppola G, Gao F, Winden KD, et al. Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron. 2011;71(6):1030–42. doi:10.1016/j.neuron.2011.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weston DJ, Gunter LE, Rogers A, Wullschleger SD. Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Syst Biol. 2008;2:16. doi:10.1186/1752-0509-2-16.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lepper ER, Baker SD, Permenter M, Ries N, van Schaik RH, Schenk PW, et al. Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients. Clin Cancer Res. 2005;11(20):7398–404. doi:10.1158/1078-0432.CCR-05-0520.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SJ, Goldstein JA. Comparison of CYP3A4 and CYP3A5: the effects of cytochrome b5 and NADPH-cytochrome P450 reductase on testosterone hydroxylation activities. Drug Metab Pharmacokinet. 2012;27(6):663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirose K, Kozu C, Yamashita K, Maruo E, Kitamura M, Hasegawa J, et al. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene. Oncol Lett. 2012;3(3):694–8. doi:10.3892/ol.2011.533.

    CAS  PubMed  Google Scholar 

  23. Li T, Zheng Y, Fu F, Ji H, Chen X, Zhao Y, et al. Assessment of UDP-glucuronosyltransferase catalyzed formation of Picroside II glucuronide in microsomes of different species and recombinant UGTs. Xenobiotica. 2011;41(7):530–7. doi:10.3109/00498254.2011.573018.

    Article  CAS  PubMed  Google Scholar 

  24. Pavese JM, Farmer RL, Bergan RC. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev. 2010;29(3):465–82. doi:10.1007/s10555-010-9238-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang L, Singh R, Liu Z, Hu M. Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones. Mol Pharm. 2009;6(5):1466–82. doi:10.1021/mp8002557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Tang H, Teng M, Li Z, Li J, Fan J, et al. Mapping of hepatic expression quantitative trait loci (eQTLs) in a Han Chinese population. J Med Genet. 2014;51(5):319–26. doi:10.1136/jmedgenet-2013-102045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schroder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, et al. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomics J. 2013;13(1):12–20. doi:10.1038/tpj.2011.44.

    Article  CAS  PubMed  Google Scholar 

  28. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 2008;6(5), e107. doi:10.1371/journal.pbio.0060107.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289–300.

    Google Scholar 

  30. Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics. 2008;24(5):719–20. doi:10.1093/bioinformatics/btm563.

    Article  CAS  PubMed  Google Scholar 

  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi:10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klein K, Thomas M, Winter S, Nussler AK, Niemi M, Schwab M, et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin Pharmacol Ther. 2012;91(6):1044–52. doi:10.1038/clpt.2011.336.

    Article  CAS  PubMed  Google Scholar 

  33. Gerbal-Chaloin S, Iankova I, Maurel P, Daujat-Chavanieu M. Nuclear receptors in the cross-talk of drug metabolism and inflammation. Drug Metab Rev. 2013;45(1):122–44. doi:10.3109/03602532.2012.756011.

    Article  CAS  PubMed  Google Scholar 

  34. Yang H, Wang H. Signaling control of the constitutive androstane receptor (CAR). Protein Cell. 2014;5(2):113–23. doi:10.1007/s13238-013-0013-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang L, Ye L, Lv C, Zheng Z, Gong Y, Liu Z. Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver microsomes and recombinant CYP450 enzymes. Toxicol Lett. 2011;202(1):47–54. doi:10.1016/j.toxlet.2011.01.019.

    Article  CAS  PubMed  Google Scholar 

  36. Wu L, Liu J, Han W, Zhou X, Yu X, Wei Q, et al. Time-dependent metabolism of Luteolin by human UDP-glucuronosyltransferases and its intestinal first-pass glucuronidation in mice. J Agric Food Chem. 2015;63(39):8722–33. doi:10.1021/acs.jafc.5b02827.

    Article  CAS  PubMed  Google Scholar 

  37. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Congiu M, Mashford ML, Slavin JL, Desmond PV. Coordinate regulation of metabolic enzymes and transporters by nuclear transcription factors in human liver disease. J Gastroenterol Hepatol. 2009;24(6):1038–44. doi:10.1111/j.1440-1746.2009.05800.x.

    Article  CAS  PubMed  Google Scholar 

  39. Temesvari M, Kobori L, Paulik J, Sarvary E, Belic A, Monostory K. Estimation of drug-metabolizing capacity by cytochrome P450 genotyping and expression. J Pharmacol Exp Ther. 2012;341(1):294–305. doi:10.1124/jpet.111.189597.

    Article  CAS  PubMed  Google Scholar 

  40. Willrich MA, Rodrigues AC, Cerda A, Genvigir FD, Arazi SS, Dorea EL, et al. Effects of atorvastatin on CYP3A4 and CYP3A5 mRNA expression in mononuclear cells and CYP3A activity in hypercholeresterolemic patients. Clin Chim Acta. 2013;421:157–63. doi:10.1016/j.cca.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas M, Winter S, Klumpp B, Turpeinen M, Klein K, Schwab M, et al. Peroxisome proliferator-activated receptor alpha, PPARalpha, directly regulates transcription of cytochrome P450 CYP2C8. Front Pharmacol. 2015;6:261. doi:10.3389/fphar.2015.00261.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sueyoshi T, Negishi M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol. 2001;41:123–43. doi:10.1146/annurev.pharmtox.41.1.123.

    Article  CAS  PubMed  Google Scholar 

  43. Gerbal-Chaloin S, Daujat M, Pascussi JM, Pichard-Garcia L, Vilarem MJ, Maurel P. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J Biol Chem. 2002;277(1):209–17. doi:10.1074/jbc.M107228200.

    Article  CAS  PubMed  Google Scholar 

  44. Sugatani J, Nishitani S, Yamakawa K, Yoshinari K, Sueyoshi T, Negishi M, et al. Transcriptional regulation of human UGT1A1 gene expression: activated glucocorticoid receptor enhances constitutive androstane receptor/pregnane X receptor-mediated UDP-glucuronosyltransferase 1A1 regulation with glucocorticoid receptor-interacting protein 1. Mol Pharmacol. 2005;67(3):845–55. doi:10.1124/mol.104.007161.

    Article  CAS  PubMed  Google Scholar 

  45. Chen C, Staudinger JL, Klaassen CD. Nuclear receptor, pregname X receptor, is required for induction of UDP-glucuronosyltranferases in mouse liver by pregnenolone-16 alpha-carbonitrile. Drug Metab Dispos. 2003;31(7):908–15. doi:10.1124/dmd.31.7.908.

    Article  CAS  PubMed  Google Scholar 

  46. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, et al. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol. 2002;61(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  47. Sun M, Cui W, Woody SK, Staudinger JL. Pregnane X receptor modulates the inflammatory response in primary cultures of hepatocytes. Drug Metab Dispos. 2015;43(3):335–43. doi:10.1124/dmd.114.062307.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Delerive P, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol. 2001;169(3):453–9.

    Article  CAS  PubMed  Google Scholar 

  49. Assenat E, Gerbal-Chaloin S, Larrey D, Saric J, Fabre JM, Maurel P, et al. Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology (Baltimore, Md). 2004;40(4):951–60. doi:10.1002/hep.20387.

    Article  CAS  Google Scholar 

  50. Patel SA, Bhambra U, Charalambous MP, David RM, Edwards RJ, Lightfoot T, et al. Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br J Cancer. 2014;111(12):2287–96. doi:10.1038/bjc.2014.540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xie W, Yeuh MF, Radominska-Pandya A, Saini SP, Negishi Y, Bottroff BS, et al. Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci U S A. 2003;100(7):4150–5. doi:10.1073/pnas.0438010100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang C, Lee SO, Yeh S, Chang TM. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene. 2014;33(25):3225–34. doi:10.1038/onc.2013.274.

    Article  CAS  PubMed  Google Scholar 

  53. Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB, et al. Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron. 2012;74(1):79–94. doi:10.1016/j.neuron.2012.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu YW, Zhao JY, Li SF, Huang JL, Qiu YR, Ma X, et al. RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arterioscler Thromb Vasc Biol. 2015;35(1):87–101. doi:10.1161/atvbaha.114.304296.

    Article  CAS  PubMed  Google Scholar 

  55. Abdel-Razzak Z, Loyer P, Fautrel A, Gautier JC, Corcos L, Turlin B, et al. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol. 1993;44(4):707–15.

    CAS  PubMed  Google Scholar 

  56. Hakkola J, Hu Y, Ingelman-Sundberg M. Mechanisms of down-regulation of CYP2E1 expression by inflammatory cytokines in rat hepatoma cells. J Pharmacol Exp Ther. 2003;304(3):1048–54. doi:10.1124/jpet.102.041582.

    Article  CAS  PubMed  Google Scholar 

  57. Jover R, Bort R, Gomez-Lechon MJ, Castell JV. Down-regulation of human CYP3A4 by the inflammatory signal interleukin-6: molecular mechanism and transcription factors involved. FASEB J. 2002;16(13):1799–801. doi:10.1096/fj.02-0195fje.

    CAS  PubMed  Google Scholar 

  58. Yang S, He P, Wang J, Schetter A, Tang W, Funamizu N, et al. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2. Cancer Res. 2016;76(13):3838–50. doi:10.1158/0008-5472.can-15-2841.

    Article  CAS  PubMed  Google Scholar 

  59. Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, et al. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A. 1996;93(15):7849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377(6544):68–71. doi:10.1038/377068a0.

    Article  CAS  PubMed  Google Scholar 

  61. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–96.

    Article  CAS  PubMed  Google Scholar 

  62. Levy DE, Darnell Jr JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62. doi:10.1038/nrm909.

    Article  CAS  PubMed  Google Scholar 

  63. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994;77(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  64. Cioce M, Canino C, Pulito C, Muti P, Strano S, Blandino G. Butein impairs the protumorigenic activity of malignant pleural mesothelioma cells. Cell Cycle. 2012;11(1):132–40. doi:10.4161/cc.11.1.18474.

    Article  CAS  PubMed  Google Scholar 

  65. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11–9. doi:10.1016/j.cytogfr.2009.11.005.

    Article  CAS  PubMed  Google Scholar 

  66. You L, Wang Z, Li H, Shou J, Jing Z, Xie J, et al. The role of STAT3 in autophagy. Autophagy. 2015;11(5):729–39. doi:10.1080/15548627.2015.1017192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81673677, 81503376, and 81673514), the Natural Science Foundation of Guangdong Province (2016A030313592), Applied Science And Technology Research Foundation of Guangdong Province (2016B020237005), and the Foundation for Distinguished Young Teachers in Higher Education of Guangdong (Yq2013037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuwen Liu or Lan Tang.

Ethics declarations

Informed consents were obtained from all participants. Approval for tissue collection and in vitro drug metabolism studies were obtained from the ethics committee of Sun Yat-Sen Memorial Hospital (ECSYS no. CS07095).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Shilong Zhong, Weichao Han and Chuqi Hou contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Mass spectrum of omeprazole, midazolam, chlorzoxazone, tolbutamide and their metabolites. (GIF 102 kb)

High Resolution Image (TIF 1183 kb)

Figure S2

UPLC profiles of testosterone, genistein, SN38, mycophenolic acid and their metabolites. (GIF 77 kb)

High Resolution Image (TIF 1682 kb)

Figure S3

Frequency distribution of CYP2C9, CYP2C19, CYP2E1, CYP3A4, CYP3A5, UGT1A1, UGT1A9 and UGT1As activities in Hungarian liver donors (n = 30). (GIF 121 kb)

High Resolution Image (TIF 1553 kb)

Table S1

(DOCX 17 kb)

Table S2

(DOCX 13 kb)

Table S3

(DOCX 13 kb)

Table S4

(DOCX 17 kb)

Table S5

(DOCX 15 kb)

Table S6

(DOCX 15 kb)

ESM 1

(DOCX 20 kb)

ESM 2

(TXT 780 bytes)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Han, W., Hou, C. et al. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis. AAPS J 19, 203–214 (2017). https://doi.org/10.1208/s12248-016-9990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9990-2

Key Words

Navigation