Skip to main content

Advertisement

Log in

Mechanistic Evaluation of Hydration Effects on the Human Epidermal Permeation of Salicylate Esters

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

We sought to understand when and how hydration enhances the percutaneous absorption of salicylate esters. Human epidermal membrane fluxes and stratum corneum solubilities of neat and diluted solutions of three esters were determined under hydrated and dehydrated conditions. Hydration doubled the human epidermal flux seen for methyl and ethyl salicylate under dehydrated conditions and increased the flux of neat glycol salicylate 10-fold. Mechanistic analyses showed that this hydration-induced enhancement arises mainly from an increase in the stratum corneum diffusivity of the three esters. Further, we showed that unlike methyl and ethyl salicylate, glycol salicylate is hygroscopic and the ∼10-fold hydration-induced flux enhancement seen with neat glycol salicylate may be due to its ability to hydrate the stratum corneum to a greater extent. The hydration-induced enhancements in in vitro epidermal flux seen here for glycol and ethyl salicylate were similar to those reported for their percutaneous absorption rates in a comparable in vivo study, whilst somewhat higher enhancement was seen for methyl salicylate in vivo. This may be explained by a physiologically induced self enhancement of neat methyl salicylate absorption in vivo which is not applicable in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Roberts MS, Walker M. Water: the most natural penetration enhancer. In: Walters KA, Hadgraft J, editors. Pharmaceutical skin penetration enhancement. New York: Marcel Dekker; 1993. p. 1–30.

    Google Scholar 

  2. Bucks D, Maibach HI. Occlusion does not uniformly enhance penetration in vivo. In: Bronaugh RL, Maibach HI, editors. Percutaneous absorption. 4th ed. Boca Raton: Taylor & Francis; 2005. p. 81–105.

    Google Scholar 

  3. Hafeez F, Maibach HI. Occlusion effect on in vivo percutaneous penetration of chemicals in man and monkey: partition coefficient effects. Skin Pharmacol Physiol. 2013;26(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  4. Zhai H, Maibach HI. Effects of skin occlusion on percutaneous absorption: an overview. Skin Pharmacol Physiol. 2001;14(1):1–10.

    Article  CAS  Google Scholar 

  5. Bronaugh R, Wester R, Bucks D, Maibach H, Sarason R. In vivo percutaneous absorption of fragrance ingredients in rhesus monkeys and humans. Food Chem Toxicol. 1990;28(5):369–73.

    Article  CAS  PubMed  Google Scholar 

  6. Bucks DA, McMaster JR, Maibach HI, Guy RH. Bioavailability of topically administered steroids: a “mass balance” technique. J Invest Dermatol. 1988;91(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  7. Bucks DAW, McMaster JR, Maibach HI, Guy R. H. Percutaneous absorption (pa) of phenols in vivo. Clin Res. 1987;35(3):A672.

    Google Scholar 

  8. Cross SE, Roberts MS. The effect of occlusion on epidermal penetration of parabens from a commercial allergy test ointment, acetone and ethanol vehicles. J Invest Dermatol. 2000;115:914–8. doi:10.1046/j.1523-1747.2000.00151.x.

    Article  CAS  PubMed  Google Scholar 

  9. Gummer C, Maibach H. The penetration of [14 c] ethanol and [14 c] methanol through excised guinea-pig skin in vitro. Food Chem Toxicol. 1986;24(4):305–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kondo S, Yamanaka C, Sugimoto I. Enhancement of transdermal delivery by superfluous thermodynamic potential. III. Percutaneous absorption of nifedipine in rats. J Pharmacobio-Dynam. 1987;10(12):743–9.

    Article  CAS  Google Scholar 

  11. Wurster DE, Kramer SF. Investigation of some factors influencing percutaneous absorption. J Pharm Sci. 1961;50:288–93.

    Article  CAS  PubMed  Google Scholar 

  12. Roberts MS, Bouwstra JA, Pirot F, Falson F. Skin hydration—a key determinant in topical absorption. In: Walters KA, Roberts MS, editors. Dermatologic, cosmeceutic, and cosmetic development. New York: Informa Healthcare USA, Inc.; 2008. p. 115–28.

    Google Scholar 

  13. Hikima T, Maibach H. Skin penetration flux and lag-time of steroids across hydrated and dehydrated human skin in vitro. Biol Pharm Bull. 2006;29:2270–3.

    Article  CAS  PubMed  Google Scholar 

  14. Björklund S, Engblom J, Thuresson K, Sparr E. A water gradient can be used to regulate drug transport across skin. J Control Release. 2010;143(2):191–200.

    Article  PubMed  Google Scholar 

  15. Warner RR, Stone KJ, Boissy YL. Hydration disrupts human stratum corneum ultrastructure. J Invest Dermatol. 2003;120:275–84. doi:10.1046/j.1523-1747.2003.12046.x.

    Article  CAS  PubMed  Google Scholar 

  16. Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88:702.

    Article  CAS  PubMed  Google Scholar 

  17. OECD. Guidance notes on dermal absorption. Paris: OECD Publishing; 2011.

    Google Scholar 

  18. Wiechers JW, Watkinson AC, Cross SE, Roberts MS. Predicting skin penetration of actives from complex cosmetic formulations: an evaluation of inter formulation and inter active effects during formulation optimization for transdermal delivery. Int J Cosmet Sci. 2012;34(6):525–35. doi:10.1111/ics.12001.

    Article  CAS  PubMed  Google Scholar 

  19. Yousef S, Liu X, Mostafa A, Mohammed Y, Grice JE, Anissimov YG, et al. Estimating maximal in vitro skin permeation flux from studies using non-sink receptor phase conditions. Pharm Res. 2016;33(9):2180–94. doi:10.1007/s11095-016-1955-8.

    Article  CAS  PubMed  Google Scholar 

  20. Irwin WJ, Masuda QN, Li Wan Po A. Transesterification of salicylate esters used as topical analgesics. Int J Pharm. 1984;21:35–50. doi:10.1016/0378-5173(84)90201-1.

    Article  CAS  Google Scholar 

  21. Hardy T, Bopp S, Egsmose M, Fontier H, Mohimont L, Steinkellner H, et al. Risk assessment of plant protection products. EFSA J. 2012;10(10):s1010.

    Article  Google Scholar 

  22. Bunge AL, Persichetti JM, Payan JP. Explaining skin permeation of 2-butoxyethanol from neat and aqueous solutions. Int J Pharm. 2012;435(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  23. Bunge A. Why skin permeation data from neat and aqueous solutions of 2-buthoxythanol (be) are not surprising. Perspect Percutanous Penetration Poster. 2006.

  24. Kuswahyuning R, Roberts MS. Concentration dependency in nicotine skin penetration flux from aqueous solutions reflects vehicle induced changes in nicotine stratum corneum retention. Pharm Res. 2014;31(6):1501–11.

    Article  CAS  PubMed  Google Scholar 

  25. Frasch HF, Barbero AM, Dotson GS, Bunge AL. Dermal permeation of 2-hydroxypropyl acrylate, a model water-miscible compound: effects of concentration, thermodynamic activity and skin hydration. Int J Pharm. 2014;460(1):240–7.

    Article  CAS  PubMed  Google Scholar 

  26. Harris DR, Papa CM, Stanton R. Percutaneous absorption and the surface area of occluded skin. Br J Dermatol. 1974;91(1):27–32. doi:10.1111/j.1365-2133.1974.tb06713.x.

    Article  CAS  PubMed  Google Scholar 

  27. Bouwstra JA, de Graaff A, Gooris GS, Nijsse J, Wiechers JW, van Aelst AC. Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol. 2003;120(5):750–8. doi:10.1046/j.1523-1747.2003.12128.x.

    Article  CAS  PubMed  Google Scholar 

  28. Vyumvuhore R, Tfayli A, Duplan H, Delalleau A, Manfait M, Baillet-Guffroy A. Effects of atmospheric relative humidity on stratum corneum structure at the molecular level: ex vivo raman spectroscopy analysis. Analyst. 2013;138(14):4103–11. doi:10.1039/c3an00716b.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Q, Li P, Liu D, Roberts MS. Effect of vehicles on the maximum transepidermal flux of similar size phenolic compounds. Pharm Res. 2013;30(1):32–40. doi:10.1007/s11095-012-0846-x.

    Article  PubMed  Google Scholar 

  30. Barrie JA. Diffusion of methanol in polydimethylsiloxane. J Polym Sci A1. 1966;4(12):3081–8. doi:10.1002/pol.1966.150041214.

    Article  CAS  Google Scholar 

  31. El-Shimi AF, Princen HM. Some aspects of stratum corneum-organic solvent system. J Soc Cosmet Chem. 1977;28(5):243–57.

    CAS  Google Scholar 

  32. Laatikainen M, Lindstrom M. Measurement of sorption in polymer membranes with a quartz crystal microbalance. J Membrane Sci. 1986;29(2):127–41. doi:10.1016/S0376-7388(00)82464-3.

    Article  CAS  Google Scholar 

  33. Twist JN, Zatz JL. Membrane-solvent-solute interaction in a model permeation system. J Pharm Sci. 1988;77(6):536–40.

    Article  CAS  PubMed  Google Scholar 

  34. Benaouda F, Brown MB, Ganguly S, Jones SA, Martin GP. Discriminating the molecular identity and function of discrete supramolecular structures in topical pharmaceutical formulations. Mol Pharm. 2012;9(9):2505–12. doi:10.1021/mp300127f.

    Article  CAS  PubMed  Google Scholar 

  35. Benaouda F, Jones SA, Martin GP, Brown MB. Localized epidermal drug delivery induced by supramolecular solvent structuring. Mol Pharm. 2016;13(1):65–72. doi:10.1021/acs.molpharmaceut.5b00499.

    Article  CAS  PubMed  Google Scholar 

  36. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Effect of propylene glycol on ibuprofen absorption into human skin in vivo. J Pharm Sci. 2008;97(1):185–97. doi:10.1002/jps.20829.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Li P, Roberts MS. Maximum transepidermal flux for similar size phenolic compounds is enhanced by solvent uptake into the skin. J Control Release. 2011;154(1):50–7. doi:10.1016/j.jconrel.2011.04.018.

    Article  CAS  PubMed  Google Scholar 

  38. Ross A, Kearney JN. The measurement of water activity in allogeneic skin grafts preserved using high concentration glycerol or propylene glycol. Cell Tissue Bank. 2004;5(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  39. Barrett MA, Zheng S, Roshankar G, Alsop RJ, Belanger R, Huynh C, et al. Interaction of aspirin (acetylsalicylic acid) with lipid membranes. PLoS One. 2012;7(4):e34357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cross SE, Megwa SA, Benson HA, Roberts MS. Self promotion of deep tissue penetration and distribution of methylsalicylate after topical application. Pharm Res. 1999;16(3):427–33.

    Article  CAS  PubMed  Google Scholar 

  41. Roberts MS, Cross SE. A physiological pharmacokinetic model for solute disposition in tissues below a topical application site. Pharm Res. 1999;16(9):1392–8.

    Article  CAS  PubMed  Google Scholar 

  42. Dancik Y, Anissimov YG, Jepps OG, Roberts MS. Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application. Br J Clin Pharmacol. 2012;73(4):564–78.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts M, Anderson R, Swarbrick J, Moore D. The percutaneous absorption of phenolic compounds: the mechanism of diffusion across the stratum corneum. J Pharm Pharmacol. 1978;30(1):486–90.

    Article  CAS  PubMed  Google Scholar 

  44. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51(4):702–47.

    CAS  PubMed  Google Scholar 

  45. Cross SE, Anderson C, Roberts MS. Topical penetration of commercial salicylate esters and salts using human isolated skin and clinical microdialysis studies. Br J Clin Pharmacol. 1998;46:29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bronaugh RL, Stewart RF. Methods for in vitro percutaneous absorption studies III: hydrophobic compounds. J Pharm Sci. 1984;73(9):1255–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the National Health and Medical Research Council of Australia (APP1049906; 1002611). SY was supported by a scholarship from the Egyptian Government. We would like to thank Dr Eman Abd for helping with the CRM imaging. Our thanks go to Howard Maibach for helpful discussions and providing key references as well as to Croda International plc for the gift of chemical samples.

We thank Drs Xinyuan Zhang and Sam Raney from the FDA for their encouragement of this work which was funded in part by the Food and Drug Administration through grant U01FD005232. The views expressed in this publication do not reflect the official policies of the U.S. Food and Drug Administration or the U.S. Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Roberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, S., Mohammed, Y., Namjoshi, S. et al. Mechanistic Evaluation of Hydration Effects on the Human Epidermal Permeation of Salicylate Esters. AAPS J 19, 180–190 (2017). https://doi.org/10.1208/s12248-016-9984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9984-0

KEY WORDS

Navigation