Skip to main content

Advertisement

Log in

Influence of P-Glycoprotein Inhibition or Deficiency at the Blood–Brain Barrier on 18F-2-Fluoro-2-Deoxy-d-glucose (18F-FDG) Brain Kinetics

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

The fluorinated d-glucose analog 18F-2-fluoro-2-deoxy-d-glucose (18F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein’s (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact 18F-FDG incorporation, suggesting that P-gp function at the blood–brain barrier may also modulate 18F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of 18F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for 18F-FDG brain kinetics were then assessed using (i) 18F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg−1 h−1) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled d-glucose exposure to the brain. In vitro, the time course of 18F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of d-glucose but not in the presence of high d-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo 18F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates 18F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. 18F-FDG is not a P-gp substrate at the BBB and 18F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–95.

    PubMed  Google Scholar 

  2. De Geus-Oei L-F, Vriens D, van Laarhoven HWM, van der Graaf WTA, Oyen WJG. Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med. 2009;50 Suppl 1:43S–54.

    Article  PubMed  Google Scholar 

  3. Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the Evaluation of Cancer Treatment Response. J Nucl Med. 2009;50:88–99.

    Article  PubMed  Google Scholar 

  4. Cook GJR, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.

    Article  PubMed  Google Scholar 

  5. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.

    Article  PubMed  Google Scholar 

  6. Frisoni GB, Bocchetta M, Chételat G, Rabinovici GD, de Leon MJ, Kaye J, et al. Imaging markers for Alzheimer disease: which vs how. Neurology. 2013;81:487–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kumar A, Juhász C, Asano E, Sood S, Muzik O, Chugani HT. Objective detection of epileptic foci by 18F-FDG PET in children undergoing epilepsy surgery. J Nucl Med. 2010;51:1901–7.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Jadvar H, Alavi A, Gambhir SS. 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med. 2009;50:1820–7.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Zhao S, Kuge Y, Mochizuki T, Takahashi T, Nakada K, Sato M, et al. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med. 2005;46:675–82.

    CAS  PubMed  Google Scholar 

  10. Avril N. GLUT1 expression in tissue and (18)F-FDG uptake. J Nucl Med. 2004;45:930–2.

    CAS  PubMed  Google Scholar 

  11. Smith TA. The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nucl Med Biol. 2001;28:1–4.

    Article  CAS  PubMed  Google Scholar 

  12. Devraj K, Klinger ME, Myers RL, Mokashi A, Hawkins RA, Simpson IA. GLUT-1 glucose transporters in the blood–brain barrier: differential phosphorylation. J Neurosci Res. 2011;89:1913–25.

    Article  CAS  PubMed  Google Scholar 

  13. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

    Article  CAS  PubMed  Google Scholar 

  14. Smith TAD, Sharma RI, Wang WG, Welch AE, Schweiger LF, Collie-Duguid ESR. Decreased [18F]fluoro-2-deoxy-d-glucose incorporation and increased glucose transport are associated with resistance to 5FU in MCF7 cells in vitro. Nucl Med Biol. 2007;34:955–60.

    Article  CAS  PubMed  Google Scholar 

  15. Yamada K, Brink I, Engelhardt R. Factors influencing [F-18] 2-fluoro-2-deoxy-D-glucose (F-18 FDG) accumulation in melanoma cells: is FDG a substrate of multidrug resistance (MDR)? J Dermatol. 2005;32:335–45.

    Article  CAS  PubMed  Google Scholar 

  16. Lorke DE, Krüger M, Buchert R, Bohuslavizki KH, Clausen M, Schumacher U. In vitro and in vivo tracer characteristics of an established multidrug-resistant human colon cancer cell line. J Nucl Med. 2001;42:646–54.

    CAS  PubMed  Google Scholar 

  17. Yu C, Wan W, Zhang B, Deng S, Yen T-C, Wu Y. Evaluation of the relationship between [18F]FDG and P-glycoprotein expression: an experimental study. Nucl Med Biol. 2012;39:671–8.

    Article  CAS  PubMed  Google Scholar 

  18. Seo S, Hatano E, Higashi T, Nakajima A, Nakamoto Y, Tada M, et al. P-glycoprotein expression affects 18F-fluorodeoxyglucose accumulation in hepatocellular carcinoma in vivo and in vitro. Int J Oncol. 2009;34:1303–12.

    CAS  PubMed  Google Scholar 

  19. Seo S, Hatano E, Higashi T, Hara T, Tada M, Tamaki N, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res. 2007;13:427–33.

    Article  CAS  PubMed  Google Scholar 

  20. Seo S, Hatano E, Higashi T, Nakajima A, Nakamoto Y, Tada M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts lymph node metastasis, P-glycoprotein expression, and recurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery. 2008;143:769–77.

    Article  PubMed  Google Scholar 

  21. Higashi K, Ueda Y, Ikeda R, Kodama Y, Guo J, Matsunari I, et al. P-glycoprotein expression is associated with FDG uptake and cell differentiation in patients with untreated lung cancer. Nucl Med Commun. 2004;25:19–27.

    Article  CAS  PubMed  Google Scholar 

  22. Brito AF, Mendes M, Abrantes AM, Tralhão JG, Botelho MF. Positron emission tomography diagnostic imaging in multidrug-resistant hepatocellular carcinoma: focus on 2-deoxy-2-(18F)fluoro-D-glucose. Mol Diagn Ther. 2014;18:495–504.

  23. Márián T, Szabó G, Goda K, Nagy H, Szincsák N, Juhász I, et al. In vivo and in vitro multitracer analyses of P-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging. 2003;30:1147–54.

    Article  PubMed  Google Scholar 

  24. Krasznai ZT, Péli-Szabó J, Németh E, Balkay L, Szabó G, Goda K, et al. Paclitaxel modifies the accumulation of tumor-diagnostic tracers in different ways in P-glycoprotein-positive and negative cancer cells. Eur J Pharm Sci. 2006;28:249–56.

    Article  CAS  PubMed  Google Scholar 

  25. Krasznai ZT, Trencsényi G, Krasznai Z, Mikecz P, Nizsalóczki E, Szalóki G, et al. 18FDG a PET tumor diagnostic tracer is not a substrate of the ABC transporter P-glycoprotein. Eur J Pharm Sci. 2014;64:1–8.

    Article  CAS  PubMed  Google Scholar 

  26. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.

    Article  CAS  PubMed  Google Scholar 

  27. König J, Müller F, Fromm MF. Transporters and drug–drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65:944–66.

    Article  PubMed  Google Scholar 

  28. Van Assema DME, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD, et al. Blood–brain barrier P-glycoprotein function in Alzheimer’s disease. Brain. 2012;135:181–9.

    Article  PubMed  Google Scholar 

  29. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365:919–26.

    Article  CAS  PubMed  Google Scholar 

  30. La Fougère C, Böning G, Bartmann H, Wängler B, Nowak S, Just T, et al. Uptake and binding of the serotonin 5-HT1A antagonist [18F]-MPPF in brain of rats: effects of the novel P-glycoprotein inhibitor tariquidar. NeuroImage. 2010;49:1406–15.

    Article  PubMed  Google Scholar 

  31. Tournier N, Chevillard L, Megarbane B, Pirnay S, Scherrmann J-M, Declèves X. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol. 2010;13:905–15.

    Article  CAS  PubMed  Google Scholar 

  32. Tournier N, André P, Blondeel S, Rizzo-Padoin N, du Moulinet d’Hardemarre A, Declèves X, et al. Ibogaine labeling with 99mTc-tricarbonyl: synthesis and transport at the mouse blood–brain barrier. J Pharm Sci. 2009;98:4650–60.

    Article  CAS  PubMed  Google Scholar 

  33. Tournier N, Cisternino S, Peyronneau M-A, Goutal S, Dolle F, Scherrmann J-M, et al. Discrepancies in the P-glycoprotein-mediated transport of (18)F-MPPF: a pharmacokinetic study in mice and non-human primates. Pharm Res. 2012;29:2468–76.

    Article  CAS  PubMed  Google Scholar 

  34. Ke AB, Eyal S, Chung FS, Link JM, Mankoff DA, Muzi M, et al. Modeling cyclosporine A inhibition of the distribution of a P-glycoprotein PET ligand, 11C-verapamil, into the maternal brain and fetal liver of the pregnant nonhuman primate: impact of tissue blood flow and site of inhibition. J Nucl Med. 2013;54:437–46.

    Article  CAS  PubMed  Google Scholar 

  35. Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, et al. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther. 2009;86:368–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  CAS  PubMed  Google Scholar 

  37. Graham MM, Muzi M, Spence AM, O’Sullivan F, Lewellen TK, Link JM, et al. The FDG lumped constant in normal human brain. J Nucl Med. 2002;43:1157–66.

    PubMed  Google Scholar 

  38. Cattelotte J, André P, Ouellet M, Bourasset F, Scherrmann J-M, Cisternino S. In situ mouse carotid perfusion model: glucose and cholesterol transport in the eye and brain. J Cereb Blood Flow Metab. 2008;28:1449–59.

    Article  PubMed  Google Scholar 

  39. Keyeux AJ, Ochrymowicz-Bemelmans DA, Charlier AA. Technetium-99m-pertechnetate as a whole blood marker for brain perfusion studies. J Nucl Med. 1994;35:479–83.

    CAS  PubMed  Google Scholar 

  40. R Core Team (2014) R: A Language and Environment for Statistical Computing. http://www.R-project.org/.

  41. Hong YT, Fryer TD. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: general principle and application to [18F]fluorodeoxyglucose positron emission tomography. NeuroImage. 2010;51:164–72.

    Article  PubMed  Google Scholar 

  42. Hasselbalch SG, Knudsen GM, Holm S, Hageman LP, Capaldo B, Paulson OB. Transport of D-glucose and 2-fluorodeoxyglucose across the blood–brain barrier in humans. J Cereb Blood Flow Metab. 1996;16:659–66.

    Article  CAS  PubMed  Google Scholar 

  43. Broxterman HJ, Pinedo HM, Schuurhuis GJ, Lankelma J. Cyclosporin A and verapamil have different effects on energy metabolism in multidrug-resistant tumour cells. Br J Cancer. 1990;62:85–8.

  44. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

  45. Quan Y, Jin Y, Faria TN, Tilford CA, He A, Wall DA, et al. Expression profile of drug and nutrient absorption related genes in Madin–Darby canine kidney (MDCK) cells grown under differentiation conditions. Pharmaceutics. 2012;4:314–33.

  46. Furuta M, Nozaki M, Kawashima M, Iimuro M, Okayama A, Fukushima M, et al. Monitoring mitochondrial metabolisms in irradiated human cancer cells with (99m)Tc-MIBI. Cancer Lett. 2004;212:105–11.

  47. Cattelotte J, Tournier N, Rizzo-Padoin N, Schinkel AH, Scherrmann J-M, Cisternino S. Changes in dipole membrane potential at the mouse blood–brain barrier enhance the transport of 99mTechnetium Sestamibi more thaninhibiting Abcb1, Abcc1, or Abcg2. J Neurochem. 2009;108:767–75.

  48. Litman T, Nielsen D, Skovsgaard T, Zeuthen T, Stein WD. ATPase activity of P-glycoprotein related to emergence of drug resistance in Ehrlich ascites tumor cell lines. Biochim Biophys Acta. 1997;1361:147–58.

  49. Martell RL, Slapak CA, Levy SB. Effect of glucose transport inhibitors on vincristine efflux in multidrug-resistant murine erythroleukaemia cells overexpressing the multidrug resistance-associated protein (MRP) and two glucose transport proteins, GLUT1 and GLUT3. Br J Cancer. 1997;75:161–8.

  50. Noda A, Takamatsu H, Minoshima S, Tsukada H, Nishimura S. Determination of kinetic rate constants for 2-[18F]fluoro-2-deoxy-d-glucose and partition coefficient of water in conscious macaques and alterations in aging or anesthesia examined on parametric images with an anatomic standardization technique. J Cereb Blood Flow Metab. 2003;23:1441–7.

  51. Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, et al. Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol. 1997;7:9–24.

  52. Cattelotte J, Tournier N, Rizzo-Padoin N, Schinkel AH, Scherrmann J-M, Cisternino S. Changes in dipole membrane potential at the mouse blood–brain barrier enhance the transport of 99mTechnetium Sestamibi more than inhibiting Abcb1, Abcc1, or Abcg2. J Neurochem. 2009;108:767–75.

  53. Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann J-M. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood–brain barrier. Cancer Res. 2004;64:3296–301.

  54. Hosten B, Boisgard R, Jacob A, Goutal S, Saubaméa B, Dollé F, et al. [11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood–brain barrier: a PET study using Bcrp TGEM knockout rats. Eur J Pharm Sci. 2013;50:520–5.

Download references

ACKNOWLEDGMENTS

Salvatore Cisternino received a financial support from the Commissariat à l’énergie atomique et aux énergies alternatives (CEA) and l’Assistance publique–Hôpitaux de Paris (AP-HP) : “Postes d’accueil CEA/AP-HP”. Nicholas Bernards kindly reviewed the English text.

Disclosure/Conflict of Interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Tournier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tournier, N., Saba, W., Goutal, S. et al. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood–Brain Barrier on 18F-2-Fluoro-2-Deoxy-d-glucose (18F-FDG) Brain Kinetics. AAPS J 17, 652–659 (2015). https://doi.org/10.1208/s12248-015-9739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9739-3

KEY WORDS

Navigation