Skip to main content

Advertisement

Log in

Immunogenicity of Subcutaneously Administered Therapeutic Proteins—a Mechanistic Perspective

  • Commentary
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The administration of therapeutic proteins via the subcutaneous route (sc) is desired for compliance and convenience, but could be challenging due to perceived immunogenic potential or unwanted immune responses. There are clinical and preclinical data supporting as well as refuting the generalized notion that sc is more immunogenic. We provide a mechanistic perspective of immunogenicity of therapeutic proteins administered via the sc route and discuss strategies and opportunities for novel therapeutic approaches to mitigate immunogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93:2184–204.

    Article  PubMed  CAS  Google Scholar 

  2. Tiede A et al. Safety and pharmacokinetics of subcutaneously administered recombinant activated factor VII (rFVIIa). J Thromb Haemostasis: JTH. 2011;9:1191–9.

    Article  CAS  Google Scholar 

  3. Braun A, Kwee L, Labow MA, Alsenz J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice. Pharm Res. 1997;14:1472–8.

    Article  PubMed  CAS  Google Scholar 

  4. Genovese MC et al. Subcutaneous abatacept versus intravenous abatacept: a phase IIIb noninferiority study in patients with an inadequate response to methotrexate. Arthritis Rheum. 2011;63:2854–64.

    Article  PubMed  CAS  Google Scholar 

  5. Schiff M. Subcutaneous abatacept for the treatment of rheumatoid arthritis. Rheumatology (Oxford). 2013;52:986–97.

    Article  CAS  Google Scholar 

  6. Bartelds GM et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA. 2011;305:1460–8.

    Article  PubMed  CAS  Google Scholar 

  7. Peng A, Kosloski MP, Nakamura G, Ding H, Balu-Iyer SV. PEGylation of a factor VIII-phosphatidylinositol complex: pharmacokinetics and immunogenicity in hemophilia A mice. AAPS J. 2012;14:35–42.

    Article  PubMed  CAS  Google Scholar 

  8. FDA. Drug approval package. Adalimumab. 2002. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/125057s110TOC.cfm. Accessed March 2013.

  9. Torosantucci R et al. Identification of oxidation sites and covalent cross-links in metal catalyzed oxidized interferon beta-1a: potential implications for protein aggregation and immunogenicity. Mol Pharmaceutics. 2013;10:2311–22.

    Article  CAS  Google Scholar 

  10. Mianowska B et al. Immunogenicity of different brands of human insulin and rapid-acting insulin analogs in insulin-naive children with type 1 diabetes. Pediatr Diabetes. 2011;12:78–84.

    Article  PubMed  CAS  Google Scholar 

  11. Eckardt KU, Casadevall N. Pure red-cell aplasia due to anti-erythropoietin antibodies. Nephrol Dial Transplant. 2003;18:865–9.

    Article  PubMed  Google Scholar 

  12. Peng A et al. Effect of route of administration of human recombinant factor VIII on its immunogenicity in hemophilia A mice. J Pharm Sci. 2009;98:4480–4.

    Article  PubMed  CAS  Google Scholar 

  13. Schellekens H. Immunogenicity of therapeutic proteins. Nephrol Dial Transplant: Off Publ Eur Dial Transpl Assoc - Eur Renal Assoc. 2003;18:1257–9.

    Article  CAS  Google Scholar 

  14. Schellekens H. The immunogenicity of therapeutic proteins. Discov Med. 2010;9:560–4.

    PubMed  Google Scholar 

  15. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151–61.

    Article  PubMed  CAS  Google Scholar 

  16. Bogunovic M et al. Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. J Exp Med. 2006;203:2627–38.

    Article  PubMed  CAS  Google Scholar 

  17. Reis e Sousa C, Germain RN. Analysis of adjuvant function by direct visualization of antigen presentation in vivo: endotoxin promotes accumulation of antigen-bearing dendritic cells in the T cell areas of lymphoid tissue. J Immunol. 1999;162:6552–61.

    PubMed  Google Scholar 

  18. Manickasingham S, Reis e Sousa C. Microbial and T cell-derived stimuli regulate antigen presentation by dendritic cells in vivo. J Immunol. 2000;165:5027–34.

    PubMed  CAS  Google Scholar 

  19. Zhong G, Reis e Sousa C, Germain RN. Antigen-unspecific B cells and lymphoid dendritic cells both show extensive surface expression of processed antigen-major histocompatibility complex class II complexes after soluble protein exposure in vivo or in vitro. J Exp Med. 1997;186:673–82.

    Article  PubMed  CAS  Google Scholar 

  20. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  PubMed  CAS  Google Scholar 

  21. Geijtenbeek TB, van Vliet SJ, Engering A, t Hart BA, van Kooyk Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol. 2004;22:33–54.

    Article  PubMed  CAS  Google Scholar 

  22. Nagao K et al. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci U S A. 2009;106:3312–7.

    Article  PubMed  CAS  Google Scholar 

  23. Hwang ST. Homeward bound: how do skin dendritic cells find their way into the lymph system? J Investig Dermatol. 2012;132:1070–3.

    Article  PubMed  CAS  Google Scholar 

  24. Iezzi G et al. Lymph node resident rather than skin-derived dendritic cells initiate specific T cell responses after Leishmania major infection. J Immunol. 2006;177:1250–6.

    PubMed  CAS  Google Scholar 

  25. Ruedl C, Koebel P, Bachmann M, Hess M, Karjalainen K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J Immunol. 2000;165:4910–6.

    PubMed  CAS  Google Scholar 

  26. Itano AA et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity. 2003;19:47–57.

    Article  PubMed  CAS  Google Scholar 

  27. Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89:297–310.

    Article  PubMed  CAS  Google Scholar 

  28. Kabashima K et al. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol. 2007;171:1249–57.

    Article  PubMed  CAS  Google Scholar 

  29. Allan RS et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 2006;25:153–62.

    Article  PubMed  CAS  Google Scholar 

  30. Pisal DS, Kosloski MP, Middaugh CR, Bankert RB, Balu-Iyer SV. Native-like aggregates of factor VIII are immunogenic in von Willebrand factor deficient and hemophilia a mice. J Pharm Sci. 2012;101:2055–65.

    Article  PubMed  CAS  Google Scholar 

  31. Idoyaga J et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Investig. 2013;123:844–54.

    PubMed  CAS  Google Scholar 

  32. Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol. 2008;29:429–35.

    Article  PubMed  CAS  Google Scholar 

  33. Purohit VS, Ramani K, Sarkar R, Kazazian Jr HH, Balasubramanian SV. Lower inhibitor development in hemophilia A mice following administration of recombinant factor VIII-O-phospho-L-serine complex. J Biol Chem. 2005;280:17593–600.

    Article  PubMed  CAS  Google Scholar 

  34. Ramani K et al. Phosphatidylserine containing liposomes reduce immunogenicity of recombinant human factor VIII (rFVIII) in a murine model of hemophilia A. J Pharm Sci. 2008;97:1386–98.

    Article  PubMed  CAS  Google Scholar 

  35. Gaitonde P, Peng A, Straubinger RM, Bankert RB, Balu-Iyer SV. Phosphatidylserine reduces immune response against human recombinant factor VIII in hemophilia A mice by regulation of dendritic cell function. Clin Immunol. 2011;138:135–45.

    Article  PubMed  CAS  Google Scholar 

  36. Gaitonde P et al. Exposure to factor VIII protein in the presence of phosphatidylserine induces hypo-responsiveness toward factor VIII challenge in hemophilia A mice. J Biol Chem. 2013;288:17051–6.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the financial support from National Heart, Lung and Blood Institute, National Institute of Health, HL-70227, to svb.

Conflict of Interest

The authors declare that there is no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathy V. Balu-Iyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathallah, A.M., Bankert, R.B. & Balu-Iyer, S.V. Immunogenicity of Subcutaneously Administered Therapeutic Proteins—a Mechanistic Perspective. AAPS J 15, 897–900 (2013). https://doi.org/10.1208/s12248-013-9510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9510-6

KEY WORDS

Navigation