Skip to main content

Advertisement

Log in

Maltodextrin-based proniosomes

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Niosomes are nonionic surfactant vesicles that have potential applications in the delivery of hydrophobic or amphiphilic drugs. Our lab developed proniosomes, a dry formulation using a sorbitol carrier coated with nonionic surfactant, which can be used to produce niosomes within minutes by the addition of hot water followed by agitation. The sorbitol carrier in the original proniosomes was soluble in the solvent used to deposit surfactant, so preparation was tedious and the dissolved sorbitol interfered with the encapsulation of one model drug. A novel method is reported here for rapid preparation of proniosomes with a wide range of surfactant loading. A slurry method has been developed to produce proniosomes using maltodextrin as the carrier. The time required to produce proniosomes by this simple method is independent of the ratio of surfactant solution to carrier material and appears to be scalable. The flexibility of the proniosome preparation method would allow for the optimization of drug encapsulation in the final formulation based on the type and amount of maltodextrin. This formulation of proniosomes is a practical and simple method of producing niosomes at the point of use for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998:172:33–70.

    Article  CAS  Google Scholar 

  2. Uchegbu IF, ed. Synthetic Surfactant Vesicles: Niosomes and Other Non-Phospholipid Vesicular Systems. Drug Targeting and Delivery. Volume II. Amsterdam: Harwood Academic Publishers. 2000.

    Google Scholar 

  3. Amnothayanun P, Turton JA, Uchegbu IF, Florence AT. Preparation and in vitro in vivo evaluation of luteinizing homone releasing hormone (LHRH)-loaded polyhedral and shperical/tubular niosomes. J Pharm Sci. 1999;88(1):34–38.

    Article  Google Scholar 

  4. Pillai GK, Salim MLD. Enhanced inhibition of platelet aggregation in-vitro by niosome-encapsulated indomethacin. Int J Pharm 1999;193:123–127.

    Article  CAS  PubMed  Google Scholar 

  5. Namdeo A, Jain NK. Niosomal delivery of 5-fluorouracil. J Microencapsulation 1999;16(6):731–740.

    Article  CAS  PubMed  Google Scholar 

  6. Oommen E, Tiwari SB, Udupa N, Kamath R, Devi PU. Niosome entrapped B-cyclodextrin methotrexate complex as a drug delivery system. Ind J Pharmacol. 1999;31:279–284.

    CAS  Google Scholar 

  7. Medda S, Mukhopadhyay S, Basu MK. Evaluation of the in-vivo activity and toxicity of amarogentin. an antileishmanial agent, in both liposomal and niosomal forms. J Antimicrob Cheno. 1999;44:791–794.

    Article  CAS  Google Scholar 

  8. Saettone MF, Perini G, Carafa M, Santucci E, Alhaique F. Non-ionic surfactant vesicles as ophthalmic carriers for cyclopentolate: a preliminary evaluation. STP Pharma Sciences 1996;6(1):94–98.

    Google Scholar 

  9. Rentel C-O, Bouwstra JA, Naisbett B, Junginger HE. Niosomes as a novel peroral vaccine delivery system. Int J Pharm 1999;186:161–167.

    Article  CAS  PubMed  Google Scholar 

  10. Sihorkar V, Vyas SP. Polysaccharide coated niosomes for oral drug delivery: formulation and in vitro stability studies. Pharmazie. 2000;55(2):107–113.

    CAS  PubMed  Google Scholar 

  11. Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers dermal and transdermal drug delivery. J Controlled Release. 1994;30:1–15.

    Article  CAS  Google Scholar 

  12. Waranuch N, Ramachandran C, Weiner ND. Effect of lipid composition on topical delivery of cyclosporin-A from nonionic liposomal formulations: an in vitro study with hairless mouse skin. J Liposome Res. 1997;7(2&3):261–271.

    Article  CAS  Google Scholar 

  13. Sentjure M, Vrhovnik K, Kristl J. Liposomes as a topical delivery system: the role of size on transport studied by the EPR imaging method. J Comtrolled Release. 1999;59:87–97.

    Article  Google Scholar 

  14. Yoshioka T, Stemberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sobitan monoesters (Span 20, 40, 60, and 80) and a sobitan triester (Span 85). Int J Pharm. 1994;105:1–6.

    Article  CAS  Google Scholar 

  15. Uchegbu IF, Double JA, Turton JA, Florence AT. Distribution, metabolism and tumoricidal activity of doxrubicin administered in sorbitan monostearate (Span 60) niosomes in the mouse. Pharm Res. 1995;12(7):1019–1024.

    Article  CAS  PubMed  Google Scholar 

  16. Ruckmani K, Jayakar B, Ghosal SK. Nonionic surfactant vesicles (niosomes) of cytarabine hydrochloride for effective treatment of leukemias: encapsulation, storage, and in vitro release. Drug Dev Ind Pharm. 2000;26(2):217–222.

    Article  CAS  PubMed  Google Scholar 

  17. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–252.

    Article  CAS  PubMed  Google Scholar 

  18. Van Winden ECA, Zuidam NJ, Crommelin DJA. Strategies for large scale production and optimized stability of pharmaceutical liposomes developed for parenteral use. In: Lasic DD, Papahadjopoulos D, eds. Medical Applications of Liposomes. Amsterdam: Elsevier: 1998:567–604.

    Chapter  Google Scholar 

  19. Hu C, Rhodes DG. Promisomes a novel drug carrier preparation. Int J Pharm. 1999;185(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  20. Payne NI, Timmis P, Ambrose CV, Ward MD, Ridgway F. Proliposomes: A Novel solution to an old problem. J Pharm Sci. 1986;75(4):325–329.

    Article  CAS  PubMed  Google Scholar 

  21. Blazek-Welsh AI, Rhodes DG. SEM imaging predicts quality of niosomes from maltodextrin-base proniosomes. Submitted to Pharmaceutical Research.

  22. Mason RP, Rhodes DG, Herbette LG. Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes. J Med Chem. 1991;34:879–877.

    Article  Google Scholar 

  23. Rhodes DG, Newton R, Butler R, Herbette L. Equilibrium and kinetic studies of the interactions of salmeterol with membrane bilayers. Molecular Pharmacology. 1992;42:596–602.

    CAS  PubMed  Google Scholar 

  24. Barbato F, Caliendo G, La Rotonda MI, Morrica P, Silipo C, Vittoria A, Relationships between octanol-water partition data, chromatographic indices and their dependence on pH in a set of beta-adrenoceptor blocking agents. Il Farmaco. 1990;45(6):647–663.

    CAS  PubMed  Google Scholar 

  25. Pidgeon C, Ong S, Liu H, Qiu X, Pidgeon M, Dantzig AH, Munroe J, Hornback WJ, Kasher JS, Glunz L, Szczerba T. IAM Chromatography an in vitro screen for predicting drug membrane permeability. J Med Chem. 1995;38(4):590–594.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Rhodes Ph.D..

Additional information

Published: January 5, 2001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blazek-Welsh, A.I., Rhodes, D.G. Maltodextrin-based proniosomes. AAPS PharmSci 3, 1 (2001). https://doi.org/10.1208/ps030101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps030101

Key words

Navigation