Skip to main content
Log in

Acoustic-resonance spectrometry as a process analytical technology for the quantification of active pharmaceutical ingredient in semi-solids

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to demonstrate acoustic resonance spectrometry (ARS) as an alternative process analytical technology to near infrared (NIR) spectroscopy for the quantification of active pharmaceutical ingradient (API) in semi-solids such as creams, gels, ointments, and lotions. The ARS used for this research was an inexpensive instrument constructed from readily available parts. Acoustic-resonance spectra were collected with a frequency spectrum from 0 to 22.05 KHz. NIR data were collected from 1100 to 2500 nm. Using 1-point net analyte signal (NAS) calibration, NIR for the API (colloidal oatmeal [CO]) gave anr 2 prediction accuracy of 0.971, and a standard error of performance (SEP) of 0.517%CO. ARS for the API resulted in anr 2 of 0.983 and SEP of 0.317%CO. NAS calibration is compared with principal component regression. This research demonstrates that ARS can sometimes outperform NIR spectrometry and can be an effective analytical method for the quantification of API in semi-solids. ARS requires no sample preparation, provides larger penetration depths into lotions than optical techniques, and measures API concentrations faster and more accurately. These results suggest that ARS is a useful process analytical technology (PAT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NIH NLM Specialized Information Services. Food and Drug Administration Actions: Recalls and Field Corrections 2002–May 12, 2004.National Institutes of Health Web site. Available at: http:// householdproducts.nlm.nih.gov/NLM_FDARecalls.htm#rayblock1. Accessed: April 1, 2005.

  2. USDA. Process Analytical Technology (PAT) Initiative.US Food and Drug Administration Web site. Available at: http://www.fda.gov/eder/ OPS/PAT.htm. Accessed: April 1, 2005.

  3. Mariani E, Villa C, Neuhoff C, Dorato S. Derivatization procedure and HPLC determination of 2-ethoxyethanol in cosmetic samples.Int J Cosmet Sci. 1992;21:199–205.

    Article  Google Scholar 

  4. Westgate E, Sherma J. Determination of the sunscreen oxybenzone in lotions by reversed-phase HPTLC with ultraviolet absorption densitometry.J Liq Chromatogr Relat Technol. 2000;23:609–615.

    Article  CAS  Google Scholar 

  5. Sabo M, Gross J, Rosenberg I. Quantitation of dimethicone in lotions using Fourier transform infrared spectral substraction.J Soc Cosmet Chem. 1984;35:273–281.

    CAS  Google Scholar 

  6. Grunewald H, Kurowski C, Timm D, Grummisch U, Meyhack U. Rapid non-destructive raw material identification in the cosmetic industry with near-infrared spectroscopy.J Near Infrared Spectrosc. 1998;6:215–222.

    Article  Google Scholar 

  7. Alltech Associates. Dimethicone.Alltech Associates Inc Web site. Available at: http://www.alltechweb.com/productinfo/technical/app/ 0048E.pdf. Accessed: April 15, 2005.

  8. Buice R, Pinkston P, Lodder R. Optimization of acoustic-resonance spectrometry for analysis of intact tablets and prediction of dissolution rate.Appl Spectrosc. 1994;48:517–524.

    Article  CAS  Google Scholar 

  9. Serris E, Perier-Camby L, Thomas G, Desfontaines M, Fantozzi G. Acoustic emission of pharmaceutical powders during compression.Powder Technol. 2002;128:296–299.

    Article  CAS  Google Scholar 

  10. Reynaud P, Dubois J, Rouby D, Fantozzi G. Acoustic emission monitoring of uniaxial pressing of ceramic powders.Ceramics Int. 1992;18:391–397.

    Article  CAS  Google Scholar 

  11. Martin LP, Poret JC, Danon A, Rosen M. Effect of adsorbed water on the ultrasonic velocity in alumina powder compacts.Mater Sci Eng A. 1998;252:27–35.

    Article  Google Scholar 

  12. Kaatze U, Wehrmann B, Pottel R. Acoustical absorption spectroscopy of liquids between 0.15 and 3000 MHz. I. High resolution ultrasonic resonator method.J Phys [E]. 1987;20:1025–1030.

    CAS  Google Scholar 

  13. Bolotnikov M, Neruchev Y. Speed of sound of hexane + 1-chlorohexane, hexane + 1-iodohexane, and 1-chlorohexane + 1-iodohexane at saturation condition.J Chem Eng Data. 2003;48:411–415.

    Article  CAS  Google Scholar 

  14. Lévêque G, Ferrandis J, Van Est J, Cros B. An acoustic sensor for simultaneous density and viscosity measurements in liquids.Rev Sci Instrum. 2000;71:1433–1440.

    Article  Google Scholar 

  15. Ferrandis JY, Leveque G. In situ measurement of elastic properties of cement by an ultrasonic resonant sensor.Cement Concrete Res. 2003;33:1183–1187.

    Article  CAS  Google Scholar 

  16. Dukhin AS, Goetz PJ. Acoustic spectroscopy for concentrated polydisperse colloids with high density contrast.Langmuir. 1996;12: 4987–4997.

    Article  CAS  Google Scholar 

  17. Dukhin AS, Goetz PJ. Characterization of aggregation phenomena by means of acoustic and electroacoustic spectroscopy.Colloids Surf A: Physicochem Eng Aspects. 1998;144:49–58.

    Article  CAS  Google Scholar 

  18. Ramdani A, Cros B, Sidki M, Ferrandis J. Acoustic near field technique for characterization of liquids, bitumen and cement setting.Eur Phys J AP. 2001;15:69–76.

    Article  CAS  Google Scholar 

  19. Patois R, Vairac P, Cretin B. Near-field acoustic densimeter and viscosimeter.Rev Sci Instrum. 2000;71:3860–3863.

    Article  CAS  Google Scholar 

  20. Prugne Ch, Van Est J, Cros B, Leveque G, Attal J. Measurement of the viscosity of liquids by near-field acoustics.Meas Sci Technol. 1998;9:1894–1898.

    Article  CAS  Google Scholar 

  21. Mills TP, Jones A, Lodder RA. Identification of wood species by acoustic-resonance spectrometry using multivariate subpopulation analysis.Appl Spectrosc. 1993;47:1880–1886.

    Article  CAS  Google Scholar 

  22. Lai E, Chan B, Chen S. Ultrasonic resonance spectroscopic analysis of microliters of liquids.Appl Spectrosc. 1988;42:526–529.

    Article  CAS  Google Scholar 

  23. Medendorp J, Yedluri J, Hammell DC, Ji T, Lodder RA, Stinchcomb AL. Near infrared spectrometry for the quantification of dermal absorption of econazole nitrate and 4-cyanophenol.Pharm Res.

  24. Boelens H, Kok W, Noord O, Smilde A. Performance optimization of spectroscopic process analyzers.Anal Chem. 2004;76:2656–2663.

    Article  CAS  PubMed  Google Scholar 

  25. Lorber A. Error propagation and figures of merit for quantification by solving matrix equations.Anal Chem. 1986;58:1167–1172.

    Article  CAS  Google Scholar 

  26. Booksh KS, Kowalski BR. Theory of analytical chemistry.Anal Chem. 1994;66:782a-791a.

    Article  CAS  Google Scholar 

  27. Lorber A, Faber K, Kowalski BR. Net analyte signal calculation in multivariate calibration.Anal Chem. 1997;69:1620–1626.

    Article  CAS  Google Scholar 

  28. Medendorp JP, Lodder RA. Applications of integrated sensing and processing in spectroscopic imaging and sensing.J. Chemometr. 2006;19:533–542.

    Article  Google Scholar 

  29. Buice R, Lodder RA. Determination of cholesterol using a novel magnetohydrodynamic acoustic-resonance near-IR (MARNI) spectrometer.Appl Spectrosc. 1993;47:887–890.

    Article  CAS  Google Scholar 

  30. Fountain W, Dumstorf K, Lowell AE, Lodder RA, Mumper RJ. Near-infrared spectroscopy for the determination of testosterone in thin-film composites.J Pharm Biomed Anal. 2003;33:181–189.

    Article  CAS  PubMed  Google Scholar 

  31. Geladi P, MacDougall D, Martens H. Linearization and scatter-correction for NIR reflectance spectra of meat.Appl Spectrosc. 1985;39:491–500.

    Article  Google Scholar 

  32. Lodder R, Hieftje G. Detection of subpopulations in near-infrared reflectance analysis.Appl Spectrosc. 1988;42:1500–1512.

    Article  CAS  Google Scholar 

  33. Lodder R. CD/MP3 Acoustic Resonance Spectrometer.Analytical Spectroscopy Research Group Web site. Available at: http://www.pharm. uky.edu. Accessed: April 5, 2004.

  34. Jolliffe IT.Principal Component Analysis. New York, NY: Springer; 2002.

    Google Scholar 

  35. Hamilton S, Lodder R. Hyperspectral imaging technology for pharmaceutical analysis.Proc Soc Photo-Opt Instrum Eng. 2002; 4626:136–147.

    CAS  Google Scholar 

  36. Bear Creek Lumber. Western Red Cedar Physical Properties.Bear Creek Lumber Web site. Available at: http://www.bearcreeklumber. com/generalinfo/onlineliterature/technicalinfohtml/wrcphysicalproperties. html. Accessed: March 1, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Lodder.

Additional information

Published: July 14, 2006

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medendorp, J., Buice, R.G. & Lodder, R.A. Acoustic-resonance spectrometry as a process analytical technology for the quantification of active pharmaceutical ingredient in semi-solids. AAPS PharmSciTech 7, 59 (2006). https://doi.org/10.1208/pt070359

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/pt070359

Keywords

Navigation