Skip to main content

Advertisement

Log in

Oral Bioavailability Enhancement of Exemestane from Self-Microemulsifying Drug Delivery System (SMEDDS)

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Limited aqueous solubility of exemestane leads to high variability in absorption after oral administration. To improve the solubility and bioavailability of exemestane, the self-microemulsifying drug delivery system (SMEDDS) was developed. SMEDDS comprises of isotropic mixture of natural or synthetic oil, surfactant, and cosurfactant, which, upon dilution with aqueous media, spontaneously form fine o/w microemulsion with less than 100 nm in droplet size. Solubility of exemestane were determined in various vehicles. Ternary phase diagrams were plotted to identify the efficient self-emulsification region. Dilution studies, droplet size, and zeta potential of the formulations were investigated. The release of exemestane from SMEDDS capsules was studied using USP dissolution apparatus in different dissolution media and compared the release of exemestane from a conventional tablet. Oral pharmacokinetic study was performed in female Wistar rats (n = 8) at the dose of 30 mg kg−1. The absorption of exemestane from SMEDDS form resulted in about 2.9-fold increase in bioavailability compared with the suspension. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as exemestane by the oral route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Robinson JR. Introduction: semi-solid formulations for oral drug delivery. Buletin Technique Gatefosse. 1996;89:3–11.

    Google Scholar 

  2. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.

    Article  PubMed  CAS  Google Scholar 

  3. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

    Article  CAS  Google Scholar 

  4. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58:173–82.

    Article  PubMed  CAS  Google Scholar 

  5. Lonning PE. Pharmacological profiles of exemestane and formestane, steroidal aromatase inhibitors used for the treatment of post-menopausal breast cancer. Breast Can Res Treat. 1998;49:S45–52.

    Article  CAS  Google Scholar 

  6. Weippl KS, Goss PE. Prevention of breast cancer using SERMs and aromatase inhibitors. J Mammary Gland Biol Neoplasia. 2003;8:5–18.

    Article  Google Scholar 

  7. Dowsett M. Theoretical considerations for the ideal aromatase inhibitors. Breast Can Res Treat. 1998;49:S39–44.

    Article  CAS  Google Scholar 

  8. Physician Desk Reference, 60th edn. Thomson Healthcare, Montvale, NJ, 2006: pp. 2600–2602.

  9. Lombardi P. Exemestane: a new steroidal aromatase inhibitor of clinical relevance. Biochim Biophys Acta. 2002;1587:326–37.

    PubMed  CAS  Google Scholar 

  10. Lonning PE. Exemestane: a review of its clinical efficacy and safety. Breast. 2001;10:198–208.

    Article  PubMed  CAS  Google Scholar 

  11. Shetty YC, Chhakkarwar PN, Acharya SS, Rajadhayaksha VD. Exemestane: a milestone against breast cancer. J Postgrad Med. 2007;53:135–8.

    Article  PubMed  CAS  Google Scholar 

  12. Ghosh PK, Murthy RSR. Microemulsions: a potential drug delivery system. Curr Drug Del. 2006;3:167–80.

    Article  CAS  Google Scholar 

  13. Pouton CW. Lipid formulation for oral administration of drugs: non emulsifying, self- emulsifying and self- microemulsifying drug delivery systems. Eur J Pharm Sci. 2000;11:S93–8.

    Article  PubMed  CAS  Google Scholar 

  14. Pouton CW. Formulation of self-microemulsifying delivery system. Adv Drug Del Rev. 1997;25:47–58.

    Article  CAS  Google Scholar 

  15. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 1995;12:1561–72.

    Article  PubMed  CAS  Google Scholar 

  16. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv. 1997;25:103–28.

    Article  CAS  Google Scholar 

  17. Pouton CW. Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int J Pharm. 1985;27:335–48.

    Article  CAS  Google Scholar 

  18. Pouton CW. Effects of the inclusion of a model drug on the performance self emulsifying formulations. J Pharm Pharmacol. 1985;37:1P.

    Google Scholar 

  19. Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25:47–58.

    Article  CAS  Google Scholar 

  20. Singh A. Bioavailability enhancement of lipophilic anticancer drugs via self-microemulsifying drug delivery system (SMEDDS). Thesis, Hamdard University New Delhi, India, 2008.

  21. Shen H, Zhong M. Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. J Pharm Pharmacol. 2006;58:1183–91.

    Article  PubMed  CAS  Google Scholar 

  22. Kim JY, Ku YS. Enhanced absorption of indomethacin after oral or rectal administration of a self-emulsifying system containing indomethacin to rats. Int J Pharm. 2000;194:81–9.

    Article  PubMed  CAS  Google Scholar 

  23. Kawakami K, Yoshikawa T, Moroto Y, Kanaoka E, Takahashi K, Nishihara Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs: I. Prescription design. J Control Release. 2000;81:65–74.

    Article  Google Scholar 

  24. Nagarsenker MS, Date AA. Design and evaluation of self-nanoemulsifying drug delivery (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329:166–72.

    Article  PubMed  CAS  Google Scholar 

  25. Pongcharoenkiat N, Narsimhan G, Lyons RT, Hem SL. The effect of surface charge and partition coefficient on the chemical stability of solutes in o/w emulsions. J Pharm Sci. 2002;91:559–70.

    Article  PubMed  CAS  Google Scholar 

  26. Chansiri G, Lyons RT, Patel MV, Hem SL. Effect of surface charge on the stability of oil/water emulsions during steam sterilization. J Pharm Sci. 1999;88:454–8.

    Article  PubMed  CAS  Google Scholar 

  27. Belmonte AA, Atef E. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Eur J Pharm Sci. 2008;35:257–63.

    Article  PubMed  CAS  Google Scholar 

  28. Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. Self-emulsifying drug delivery systems: formulation and biopharmaceutical evaluation of an investigational lipophilic compound. Pharm Res. 1992;9:87–93.

    Article  PubMed  CAS  Google Scholar 

  29. Shah NH, Carvajal MT, Patel CI, Infeld MH, Malick AW. Self-emulsifying drug delivery systems (SEDDS) with polyglycolized glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm. 1994;106:15–23.

    Article  CAS  Google Scholar 

  30. Martena B, Pfeuffer M, Schrezenmeir J. Medium-chain triglycerides. Int Dairy J. 2006;16:1374–82.

    Article  CAS  Google Scholar 

  31. Khoo SM, Humberstone AJ, Porter CJH, Edwards GA, Charman WN. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of Halofantrine. Int J Pharm. 1998;167:155–64.

    Article  CAS  Google Scholar 

  32. Cao Y, Marra AY, Anderson BD. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J Pharm Sci. 2004;93:2768–79.

    Article  PubMed  CAS  Google Scholar 

  33. MacGregor KJ, Embleton JK, Lacy JE, Perry EA, Solomon LJ, Seager H, et al. Influence of lipolysis on drug absorption from the gastro intestinal tract. Adv Drug Deliv Rev. 1997;25:33–46.

    Article  CAS  Google Scholar 

  34. Schulman JH, Montagne JB. Formation of microemulsions by amino alkyl alcohols. Ann N Y Acad Sci. 1961;92:366–71.

    Article  PubMed  CAS  Google Scholar 

  35. Craig DQM, Barker SA, Banning D, Booth SW. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int J Pharm. 1995;114:103–10.

    Article  CAS  Google Scholar 

  36. Kommuru TR, Gurley B, Khan MA, Reddy IK. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm. 2001;212:233–46.

    Article  PubMed  CAS  Google Scholar 

  37. Singh A, Chaurasiya A, Singh M, Upadhyay S, Mukherjee R, Khar RK. Exemestane loaded self-microemulsifying drug delivery system (SMEDDS): development and optimization. AAPS PharmSciTech. 2008;9:628–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Chaurasiya, A., Awasthi, A. et al. Oral Bioavailability Enhancement of Exemestane from Self-Microemulsifying Drug Delivery System (SMEDDS). AAPS PharmSciTech 10, 906–916 (2009). https://doi.org/10.1208/s12249-009-9281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9281-7

Key words

Navigation