Skip to main content
Log in

Emerging Applications of Metabolomics in Studying Chemopreventive Phytochemicals

  • Review Article
  • Theme: Natural Products Drug Discovery in Cancer Prevention
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Phytochemicals from diet and herbal medicines are under intensive investigation for their potential use as chemopreventive agents to block and suppress carcinogenesis. Chemical diversity of phytochemicals, together with complex metabolic interactions between phytochemicals and biological system, can overwhelm the capacity of traditional analytical platforms, and thus pose major challenges in studying chemopreventive phytochemicals. Recent progresses in metabolomics have transformed it to become a robust systems biology tool, suitable for examining both chemical and biochemical events that contribute to the cancer prevention activities of plant preparations or their bioactive components. This review aims to discuss the technical platform of metabolomics and its existing and potential applications in chemoprevention research, including identifying bioactive phytochemicals in plant extracts, monitoring phytochemical exposure in humans, elucidating biotransformation pathways of phytochemicals, and characterizing the effects of phytochemicals on endogenous metabolism and cancer metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Umar A, Dunn BK, Greenwald P. Future directions in cancer prevention. Nat Rev Cancer. 2012;12:835–48.

    Article  PubMed  CAS  Google Scholar 

  3. Wattenberg LW. Chemoprophylaxis of carcinogenesis: a review. Cancer Res. 1966;26:1520–6.

    PubMed  CAS  Google Scholar 

  4. Wattenberg LW. Effects of dietary constituents on the metabolism of chemical carcinogens. Cancer Res. 1975;35:3326–31.

    PubMed  CAS  Google Scholar 

  5. Collett NP, Amin ARMR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37:258–81.

    Article  Google Scholar 

  6. Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96:1027–39.

    Article  PubMed  CAS  Google Scholar 

  7. Reddy L, Odhav B, Bhoola KD. Natural products for cancer prevention: a global perspective. Pharmacol Ther. 2003;99:1–13.

    Article  PubMed  CAS  Google Scholar 

  8. Benetou V, Orfanos P, Lagiou P, Trichopoulos D, Boffetta P, Trichopoulou A. Vegetables and fruits in relation to cancer risk: evidence from the Greek epic cohort study. Cancer Epidemiol Biomarkers Prev. 2008;17:387–92.

    Article  PubMed  CAS  Google Scholar 

  9. Freedman ND, Park Y, Subar AF, Hollenbeck AR, Leitzmann MF, Schatzkin A, et al. Fruit and vegetable intake and head and neck cancer risk in a large United States prospective cohort study. Int J Cancer. 2008;122:2330–6.

    Article  PubMed  CAS  Google Scholar 

  10. Wachtel-Galor S, Benzie IFF. (2011) Herbal medicine: An introduction to its history, usage, regulation, current trends, and research needs. in Herbal medicine: Biomolecular and clinical aspects (Benzie, I. F. F., and Wachtel-Galor, S. eds.), 2nd Ed., Boca Raton (FL). pp

  11. Glade MJ. Food, nutrition, and the prevention of cancer: a global perspective. American institute for cancer research/world cancer research fund, American Institute for Cancer Research, 1997. Nutrition. 1999;15:523–6.

    Article  PubMed  CAS  Google Scholar 

  12. Chen C, Kong ANT. Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci. 2005;26:318–26.

    Article  PubMed  Google Scholar 

  13. Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009;9:429–39.

    Article  PubMed  CAS  Google Scholar 

  14. Ahmad A, Sakr WA, Rahman KM. Anticancer properties of indole compounds: mechanism of apoptosis induction and role in chemotherapy. Curr Drug Targets. 2010;11:652–66.

    Google Scholar 

  15. Urich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H. Application of the “-omic-” technologies in phytomedicine. Phytomedicine. 2007;14:70–82.

    Article  Google Scholar 

  16. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. Hmdb 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013;41:D801–7.

    Article  PubMed  CAS  Google Scholar 

  17. Sumner LW, Mendes P, Dixon RA. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry. 2003;62:817–36.

    Article  PubMed  CAS  Google Scholar 

  18. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4:551–61.

    Article  PubMed  CAS  Google Scholar 

  19. Di Leo A, Claudino W, Colangiuli D, Bessi S, Pestrin M, Biganzoli L. New strategies to identify molecular markers predicting chemotherapy activity and toxicity in breast cancer. Ann Oncol. 2007;18 Suppl 12:xii8–xii14.

    Article  PubMed  Google Scholar 

  20. Kuhara T. Noninvasive human metabolome analysis for differential diagnosis of inborn errors of metabolism. J Chromatogr B Anal Technol Biomed Life Sci. 2007;855:42–50.

    Article  CAS  Google Scholar 

  21. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.

    Article  PubMed  CAS  Google Scholar 

  22. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 2004;9:418–25.

    Article  PubMed  CAS  Google Scholar 

  23. Ryan D, Robards K. Metabolomics: the greatest omics of them all? Anal Chem. 2006;78:7954–8.

    Article  PubMed  CAS  Google Scholar 

  24. Dunn WB, Bailey NJC, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst. 2005;130:606–25.

    Article  PubMed  CAS  Google Scholar 

  25. Kersten RD, Dorrestein PC. Secondary metabolomics: natural products mass spectrometry goes global. ACS Chem Biol. 2009;4:599–601.

    Article  PubMed  CAS  Google Scholar 

  26. Chen C, Gonzalez FJ, Idle JR. LC-MS-based metabolomics in drug metabolism. Drug Metab Rev. 2007;39:581–97.

    Article  PubMed  CAS  Google Scholar 

  27. Chen C, Kim S. LC-MS-based metabolomics of xenobiotic-induced toxicities. Comput Struct Biotechnol J. 2013;4:e20130108.

    Google Scholar 

  28. Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24:613–46.

    Article  PubMed  CAS  Google Scholar 

  29. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Mol Biosyst. 2012;8:470–81.

    Article  PubMed  CAS  Google Scholar 

  31. Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2005;56:219–43.

    Article  PubMed  CAS  Google Scholar 

  32. Santa T. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr. 2011;25:1–10.

    Article  PubMed  CAS  Google Scholar 

  33. Jia S, Kang YP, Park JH, Lee J, Kwon SW. Simultaneous determination of 23 amino acids and 7 biogenic amines in fermented food samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2011;1218:9174–82.

    Article  PubMed  CAS  Google Scholar 

  34. Xu F, Zou L, Liu Y, Zhang Z, Ong CN. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Mass Spectrom Rev. 2011;30:1143–72.

    Article  PubMed  CAS  Google Scholar 

  35. Gao S, Zhang ZP, Karnes HT. Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. J Chromatogr B Anal Technol Biomed Life Sci. 2005;825:98–110.

    Article  CAS  Google Scholar 

  36. Gamache PH, Meyer DF, Granger MC, Acworth IN. Metabolomic applications of electrochemistry/mass spectrometry. J Am Soc Mass Spectrom. 2004;15:1717–26.

    Article  PubMed  CAS  Google Scholar 

  37. Schattka B, Alexander M, Ying SL, Man A, Shaw RA. Metabolic fingerprinting of biofluids by infrared spectroscopy: modeling and optimization of flow rates for laminar fluid diffusion interface sample preconditioning. Anal Chem. 2011;83:555–62.

    Article  PubMed  CAS  Google Scholar 

  38. Wolfender JL, Queiroz EF, Hostettmann K. Phytochemistry in the microgram domain—a LC-NMR perspective. Magn Reson Chem. 2005;43:697–709.

    Article  PubMed  CAS  Google Scholar 

  39. Wang X, Sun H, Zhang A, Wang P, Han Y. Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies. J Sep Sci. 2011;34:3451–9.

    Article  PubMed  CAS  Google Scholar 

  40. Hopfgartner G, Varesio E, Tschappat V, Grivet C, Bourgogne E, Leuthold LA. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom. 2004;39:845–55.

    Article  PubMed  CAS  Google Scholar 

  41. Hu QZ, Noll RJ, Li HY, Makarov A, Hardman M, Cooks RG. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–43.

    Article  PubMed  CAS  Google Scholar 

  42. Allwood JW, Parker D, Beckmann M, Draper J, Goodacre R. Fourier transform ion cyclotron resonance mass spectrometry for plant metabolite profiling and metabolite identification. Methods Mol Biol. 2012;860:157–76.

    Article  PubMed  CAS  Google Scholar 

  43. Chernushevich IV, Loboda AV, Thomson BA. An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom. 2001;36:849–65.

    Article  PubMed  CAS  Google Scholar 

  44. Smolinska A, Blanchet L, Buydens LM, Wijmenga SS. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta. 2012;750:82–97.

    Article  PubMed  CAS  Google Scholar 

  45. Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A. 2007;1158:318–28.

    Article  PubMed  CAS  Google Scholar 

  46. Sysi-Aho M, Katajamaa M, Yetukuri L, and Oresic M. Normalization method for metabolomics data using optimal selection of multiple internal standards. Bmc Bioinformatics. 2007;8.

  47. Schlotterbeck G, Ross A, Dieterle F, Senn H. Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics. 2006;7:1055–75.

    Article  PubMed  CAS  Google Scholar 

  48. Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J Proteome Res. 2007;6:469–79.

    Article  PubMed  CAS  Google Scholar 

  49. Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K, et al. Metabolite annotations based on the integration of mass spectral information. Plant J. 2008;54:949–62.

    Article  PubMed  CAS  Google Scholar 

  50. Kind T, Fiehn O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinforma. 2006;7:234.

    Article  Google Scholar 

  51. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6:813–23.

    Article  PubMed  CAS  Google Scholar 

  52. Gibbs JB. Mechanism-based target identification and drug discovery in cancer research. Science. 2000;287:1969–73.

    Article  PubMed  CAS  Google Scholar 

  53. Holbeck SL. Update on NCI in vitro drug screen utilities. Eur J Cancer. 2004;40:785–93.

    Article  PubMed  CAS  Google Scholar 

  54. Kinghorn AD, Farnsworth NR, Soejarto DD, Cordell GA, Swanson SM, Pezzuto JM, et al. Novel strategies for the discovery of plant-derived anticancer agents. Pharm Biol. 2003;41:53–67.

    Article  CAS  Google Scholar 

  55. Damia G, D'Incalci M. Contemporary pre-clinical development of anticancer agents—what are the optimal preclinical models? Eur J Cancer. 2009;45:2768–81.

    Article  PubMed  CAS  Google Scholar 

  56. Rochfort S. Metabolomics reviewed: a new “Omics” platform technology for systems biology and implications for natural products research. J Nat Prod. 2005;68:1813–20.

    Article  PubMed  CAS  Google Scholar 

  57. Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.

    Article  CAS  Google Scholar 

  58. Yuliana ND, Khatib A, Choi YH, Verpoorte R. Metabolomics for bioactivity assessment of natural products. Phytother Res. 2011;25:157–69.

    Google Scholar 

  59. Yuliana ND, Khatib A, Verpoorte R, Choi YH. Comprehensive extraction method integrated with NMR metabolomics: a new bioactivity screening method for plants, adenosine a1 receptor binding compounds in Orthosiphon stamineus Benth. Anal Chem. 2011;83:6902–6.

    Article  PubMed  CAS  Google Scholar 

  60. Wolfender JL, Queiroz EF. New approaches for studying the chemical diversity of natural resources and the bioactivity of their constituents. Chimia (Aarau). 2012;66:324–9.

    Article  CAS  Google Scholar 

  61. Cardoso-Taketa AT, Pereda-Miranda R, Choi YH, Verpoorte R, Villarreal ML. Metabolic profiling of the mexican anxiolytic and sedative plant Golphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis. Planta Med. 2008;74:1295–301.

    Article  PubMed  CAS  Google Scholar 

  62. Brunelle JK, Zhang B. Apoptosis assays for quantifying the bioactivity of anticancer drug products. Drug Resist Updat. 2010;13:172–9.

    Article  PubMed  CAS  Google Scholar 

  63. Lieberman MM, Patterson GML, Moore RE. In vitro bioassays for anticancer drug screening: effects of cell concentration and other assay parameters on growth inhibitory activity. Cancer Lett. 2001;173:21–9.

    Article  PubMed  CAS  Google Scholar 

  64. Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008;19:73–82.

    Article  PubMed  CAS  Google Scholar 

  65. Kussmann M, Rezzi S, Daniel H. Profiling techniques in nutrition and health research. Curr Opin Biotechnol. 2008;19:83–99.

    Article  PubMed  CAS  Google Scholar 

  66. Ito H, Gonthier MP, Manach C, Morand C, Mennen L, Remesy C, et al. Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr. 2005;94:500–9.

    Article  PubMed  CAS  Google Scholar 

  67. Wang P, Liang Y, Zhou N, Chen B, Yi L, Yu Y, et al. Screening and analysis of the multiple absorbed bioactive components and metabolites of dangguibuxue decoction by the metabolic fingerprinting technique and liquid chromatography/diode-array detection mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:99–106.

    Article  PubMed  Google Scholar 

  68. Chen C, Meng L, Ma X, Krausz KW, Pommier Y, Idle JR, et al. Urinary metabolite profiling reveals CYP1A2-mediated metabolism of NSC686288 (aminoflavone). J Pharmacol Exp Ther. 2006;318:1330–42.

    Article  PubMed  CAS  Google Scholar 

  69. Giri S, Idle JR, Chen C, Zabriskie TM, Krausz KW, Gonzalez FJ. A metabolomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidine in the mouse. Chem Res Toxicol. 2006;19:818–27.

    Article  PubMed  CAS  Google Scholar 

  70. Yao D, Shi X, Wang L, Gosnell BA, Chen C. Characterization of differential cocaine metabolism in mouse and rat through metabolomics-guided metabolite profiling. Drug Metab Dispos. 2013;41:79–88.

    Article  PubMed  CAS  Google Scholar 

  71. Fang ZZ, Krausz KW, Li F, Cheng J, Tanaka N, Gonzalez FJ. Metabolic map and bioactivation of the anti-tumour drug noscapine. Br J Pharmacol. 2012;167:1271–86.

    Google Scholar 

  72. Chen C, Krausz KW, Idle JR, Gonzalez FJ. Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and cyp2e1-null mice. J Biol Chem. 2008;283:4543–59.

    Article  PubMed  CAS  Google Scholar 

  73. Shi X, Yao D, Chen C. Identification of n-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. J Biol Chem. 2012;287:6336–49.

    Article  PubMed  CAS  Google Scholar 

  74. Jiang XL, Gonzalez FJ, Yu AM. Drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. Drug Metab Rev. 2011;43:27–40.

    Article  PubMed  CAS  Google Scholar 

  75. Chen C, Ma X, Malfatti MA, Krausz KW, Kimura S, Felton JS, et al. A comprehensive investigation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHiP) metabolism in the mouse using a multivariate data analysis approach. Chem Res Toxicol. 2007;20:531–42.

    Article  PubMed  CAS  Google Scholar 

  76. Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–73.

    Article  PubMed  CAS  Google Scholar 

  77. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  PubMed  CAS  Google Scholar 

  78. Arakaki AK, Skolnick J, McDonald JF. Marker metabolites can be therapeutic targets as well. Nature. 2008;456:443.

    Article  PubMed  CAS  Google Scholar 

  79. Serkova NJ, Glunde K. Metabolomics of cancer. Methods Mol Biol. 2009;520:273–95.

    Article  PubMed  CAS  Google Scholar 

  80. Scalbert A, Knasmuller S. Genomic effects of phytochemicals and their implication in the maintenance of health. Br J Nutr. 2008;99(E Suppl 1):ES1–2.

    PubMed  Google Scholar 

  81. Spencer JP. Flavonoids: modulators of brain function? Br J Nutr. 2008;99(E Suppl 1):ES60–77.

    PubMed  Google Scholar 

  82. Fardet A, Llorach R, Martin JF, Besson C, Lyan B, Pujos-Guillot E, et al. A liquid chromatography-quadrupole time-of-flight (LC-QToF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. J Proteome Res. 2008;7:2388–98.

    Article  PubMed  CAS  Google Scholar 

  83. Robertson DG, Watkins PB, Reily MD. Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci. 2011;120 Suppl 1:S146–70.

    Article  PubMed  CAS  Google Scholar 

  84. Griffin JL, Nicholls AW. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics. 2006;7:1095–107.

    Article  PubMed  CAS  Google Scholar 

  85. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610.

    Article  PubMed  CAS  Google Scholar 

  86. Solanky KS, Bailey NJ, Beckwith-Hall BM, Bingham S, Davis A, Holmes E, et al. Biofluid 1H NMR-based metabonomic techniques in nutrition research—metabolic effects of dietary isoflavones in humans. J Nutr Biochem. 2005;16:236–44.

    Article  PubMed  CAS  Google Scholar 

  87. Van Dorsten FA, Daykin CA, Mulder TPJ, Van Duynhoven JPM. Metabonomics approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem. 2006;54:6929–38.

    Article  PubMed  Google Scholar 

  88. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–703.

    Article  PubMed  CAS  Google Scholar 

  89. Wang Y, Tang H, Nicholson JK, Hylands PJ, Sampson J, Holmes E. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem. 2005;53:191–6.

    Article  PubMed  CAS  Google Scholar 

  90. Bayet-Robert M, and Morvan D. Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS One. 2013;8:e57971.

    Google Scholar 

  91. Verpoorte R, Choi YH, Kim HK. Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol. 2005;100:53–6.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Research projects in Dr. Chi Chen’s lab were supported in part by an Agricultural Experiment Station project MIN-18-082 from the United States Department of Agriculture (USDA). We thank all the members in Dr. Chi Chen’s lab for their help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Chen.

Additional information

Guest Editors: Ah-Ng Tony Kong and Chi Chen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Chen, C. Emerging Applications of Metabolomics in Studying Chemopreventive Phytochemicals. AAPS J 15, 941–950 (2013). https://doi.org/10.1208/s12248-013-9503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9503-5

KEY WORDS

Navigation