Skip to main content
Log in

Investigation of radical intermediates in polymer sonochemistry

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

There is current interest in using high-intensity ultrasound to perform a range of chemical transformations, including polymerisation reactions. In this work, the technique of radical trapping, primarily using DPPH, has been used to measure radical production rates in a range of monomer and related systems when exposed to high intensity ultrasound. It has been shown that realistic rates of production can be obtained around room temperature equivalent to thermal decomposition rates > 100°C, making sonication a viable method for initiating polymerisation. Rates of initiation in a twophase organic in water system have also been measured. Some of the initiating species have been identified recording the ESR spectra of adducts with spin traps, although further analysis is needed before the complete range of radicals produced can be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. Suslick, Ultrasound: Its Chemical, Physical and Biological Effects.VCH, NewYork, NY (1990).

    Google Scholar 

  2. K. S. Suslick and G. J. Price, Annu. Rev. Mater. Sci. 29, 295 (1999).

    Google Scholar 

  3. G. J. Price, P. J. West and P. F. Smith, Ultrasonics Sonochem. 1, S51 (1994).

    Google Scholar 

  4. G. J. Price, in: Novel Methods of Polymer Synthesis II, J. R. Ebdon and G. C. Eastmond (Eds), p. 117. Blackie, Glasgow (1995).

    Google Scholar 

  5. G. J. Price, in: Chemistry under Extreme or Non-Classical Conditions, R. van Eldik and C. Hubbard (Eds), p. 381. Spektrum, Heidelberg (1996).

    Google Scholar 

  6. T. Leighton, The Acoustic Bubble. Academic Press, London (1994).

    Google Scholar 

  7. K. S. Suslick, Y. Didenko, M. M. Fang, T. Hyeon, K. J. Kolbeck, W. B. McNamara, M. M. Mdleleni and M. Wong, Philos. Trans. Roy. Soc. Ser. A 357, 335 (1999).

    Google Scholar 

  8. G. J. Price, Adv. Sonochem. 1, 231 (1990).

    Google Scholar 

  9. E. J. Hart and A. Henglein, J. Phys. Chem. 91, 3654 (1987).

    Google Scholar 

  10. G. Mark, A. Tauber, L. A. Rudiger, H. P. Schuchmann, D. Schulz, A. Mues and C. von Sonntag, Ultrasonics Sonochem. 5, 41 (1998).

    Google Scholar 

  11. V. Misik and P. Riesz, J. Phys. Chem. 98, 1634 (1994).

    Google Scholar 

  12. V. Misik and P. Riesz, Ultrasonics Sonochem. 3, 25 (1996).

    Google Scholar 

  13. J. Z. Sostaric and P. Riesz, J. Phys. Chem. B 106,12537 (2002).

    Google Scholar 

  14. R. Anbarasan, J. Jayaseharan, M. Sudha and A. Gopalan, J. Appl. Polym. Sci. 89, 3685 (2003).

    Google Scholar 

  15. P. Kruus and T. J. Patraboy, J. Phys. Chem. 89, 3379 (1985).

    Google Scholar 

  16. G. J. Price, D. J. Norris and P. J. West, Macromolecules 25, 6447 (1992).

    Google Scholar 

  17. R. G. Gilbert, Emulsion Polymerization: A Mechanistic Approach. Academic Press, New York, NY (1995).

    Google Scholar 

  18. S. Biggs and F. Grieser, Macromolecules 28, 4877 (1995).

    Google Scholar 

  19. M. Bradley and F. Grieser, J. Coll. Interface Sci. 251, 78 (2002).

    Google Scholar 

  20. H. M. Cheung and K. Gaddam, J. Appl. Polym. Sci. 76, 101 (2000).

    Google Scholar 

  21. H. C. J. Chou and J. O. Stoffer, J. Appl. Polym. Sci. 72, 797 (1999).

    Google Scholar 

  22. C. Sehgal, R. Sutherland and R. Verrall, J. Phys. Chem. 84, 388 (1980).

    Google Scholar 

  23. K. S. Suslick, J. J. Gawienowski, P. F. Schubert and H. H. Wang, Ultrasonics 22, 33 (1984).

    Google Scholar 

  24. J. P. Lorimer, D. Kershaw and T. J. Mason, J. Chem. Soc. Faraday Trans. 91, 1067 (1995).

    Google Scholar 

  25. G. J. Price and A. A. Clifton, Polymer 37, 3971 (1996).

    Google Scholar 

  26. G. J. Price and A. M. Patel, Eur. Polym. J. 32, 1289 (1996).

    Google Scholar 

  27. K. S. Suslick, J. J. Gawienowski, P. F. Schubert and H. H. Wang, J. Phys. Chem. 87, 2299 (1983).

    Google Scholar 

  28. G. J. Price, A. A. Clifton and F. Keen, Pol ymer 37, 5825 (1996).

    Google Scholar 

  29. F. R. Young, Cavitation. McGraw-Hill, London (1989).

    Google Scholar 

  30. B. E. Noltingk and E. A. Neppiras, Proc. Phys. Soc. Ser. B 63, 674 (1950).

    Google Scholar 

  31. J. Brandrup and E. H. Immergut, The Polymer Handbook. Wiley, New York, NY (1990).

    Google Scholar 

  32. G. Odian, Principles of Polymerization. Wiley Interscience, Chichester (1991).

    Google Scholar 

  33. E. B. Flint and K. S. Suslick, Science 253, 1397 (1991).

    Google Scholar 

  34. Physical Properties Database. Syracuse Research, Syracuse, NY (accessed March 2004 at http://esc.syrres.com/interkow/PhysProp.htm).

  35. B. Abismail, J. P. Canselier, A. M. Wilhelm, H. Delmas and C. Gourdon, Ultrasonics Sonochem. 7, 187 (2000).

    Google Scholar 

  36. J. E. Mark, H. R. Allcock and R. West, Inorganic Polymers. Prentice-Hall, Englewood Cliffs, NJ (1992).

    Google Scholar 

  37. J. R. Thomas and D. L. de Vries, J. Phys. Chem. 63, 254 (1959).

    Google Scholar 

  38. G. J. Price, M. P. Hearn, E. N. K. Wallace and A. M. Patel, Polymer 37, 2303 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, G.J., Garland, L., Comina, J. et al. Investigation of radical intermediates in polymer sonochemistry. Research on Chemical Intermediates 30, 807–827 (2004). https://doi.org/10.1163/1568567041856972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/1568567041856972

Navigation