Skip to main content
Log in

Optimized atomistic force fields for aqueous solutions of Magnesium and Calcium Chloride: Analysis, achievements and limitations

  • Regular Article
  • Methodological Aspects of Coarse Graining
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Molecular simulations are an important tool in the study of aqueous salt solutions. To predict the physical properties accurately and reliably, the molecular models must be tailored to reproduce experimental data. In this work, a combination of recent global and local optimization tools is used to derive force fields for MgCl2 (aq) and CaCl2 (aq). The molecular models for the ions are based on a Lennard-Jones (LJ) potential with a superimposed point charge. The LJ parameters are adjusted to reproduce the bulk density and shear viscosity of the different solutions at 1 bar and temperatures of 293.15, 303.15, and 318.15 K. It is shown that the σ-value of chloride consistently has the strongest influence on the system properties. The optimized force field for MgCl2 (aq) provides both properties in good agreement with the experimental data over a wide range of salt concentrations. For CaCl2 (aq), a compromise was made between the bulk density and shear viscosity, since reproducing the two properties requires two different choices of the LJ parameters. This is demonstrated by studying metamodels of the simulated data, which are generated to visualize the correlation between the parameters and observables by using projection plots. Consequently, in order to derive a transferable force field, an error of ∼3% on the bulk density has to be tolerated to yield the shear viscosity in satisfactory agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Debye, E. Hückel, Physikalische Zeitschrift 24, 185 (1923)

    Google Scholar 

  2. C.C. Chen, H.I. Britt, J.F. Boston, L.B. Evans, AIChE J. 28, 588 (1982)

    Article  Google Scholar 

  3. C.C. Chen, L.B. Evans, AIChE J. 32, 444 (1986)

    Article  Google Scholar 

  4. K.S. Pitzer, G. Mayorga, J. Phys. Chem. 77, 2300 (1973)

    Article  Google Scholar 

  5. K.S. Pitzer, G. Mayorga, J. Sol. Chem. 3, 539 (1974)

    Article  Google Scholar 

  6. W. Dietz, W.O. Riede, K. Heinzinger, Zeitschrift für Naturforschung A 37, 1038 (1982)

    Article  ADS  Google Scholar 

  7. M.M. Probst, T. Radnai, K. Heinzinger, P. Bopp, B.M. Rode, J. Phys. Chem. 89, 753 (1985)

    Article  Google Scholar 

  8. E. Guardia, A. Robinson, J.A. Padro, J. Chem. Phys. 99, 4229 (1993)

    Article  ADS  Google Scholar 

  9. S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, J. Phys. Chem. B 102, 4193 (1998)

    Article  Google Scholar 

  10. J. Aaqvist, J. Phys. Chem. 94, 8021 (1990)

    Article  Google Scholar 

  11. D. Spångberg, K. Hermansson, J. Chem. Phys. 120, 4829 (2004)

    Article  ADS  Google Scholar 

  12. D. Jiao, C. King, A. Grossfield, T.A. Darden, P. Ren, J. Phys. Chem. B 110, 18553 (2006)

    Article  Google Scholar 

  13. S. Gavryushov, P. Linse, J. Phys. Chem. B 110, 10878 (2006)

    Article  Google Scholar 

  14. J.P. Larentzos, L.J. Criscenti, J. Phys. Chem. B 112, 14243 (2008)

    Article  Google Scholar 

  15. S. Deublein, S. Reiser, J. Vrabec, H. Hasse, J. Phys. Chem. B 116, 5448 (2012)

    Article  Google Scholar 

  16. A. Krämer, M. Hülsmann, T. Köddermann, D. Reith, Comp. Phys. Commun. 185, 3228 (2014)

    Article  ADS  Google Scholar 

  17. M. Hülsmann, T. Köddermann, J. Vrabec, D. Reith, Comp. Phys. Commun. 181, 499 (2010)

    Article  ADS  Google Scholar 

  18. M. Hülsmann, T.J. Müller, T. Ködderman, D. Reith, Molec. Simul. 36, 1182 (2010)

    Article  Google Scholar 

  19. M. Hülsmann, S. Kopp, M. Huber, D. Reith, Comput. Sci. Discovery 6, 015005 (2013)

    Article  ADS  Google Scholar 

  20. M. Hülsmann, K.N. Kirschner, A. Krämer, D.D. Heinrich, O. Krämer-Fuhrmann, D. Reith, Foundations of Molecular Modeling and Simulation (Springer, 2016), p. 53

  21. T. Isono, J. Chem. Eng. Data 29, 45 (1984)

    Article  Google Scholar 

  22. M. Hülsmann, J. Vrabec, A. Maaß, D. Reith, Comp. Phys. Commun. 181, 887 (2010)

    Article  ADS  Google Scholar 

  23. T. Köddermann, K.N. Kirschner, J. Vrabec, M. Hülsmann, D. Reith, Fluid Phase Equilibria 310, 25 (2011)

    Article  Google Scholar 

  24. D. van der Spoel, E. Lindahl, B. Hess, H.J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005)

    Article  Google Scholar 

  25. H.W. Horn, W.C. Swope, J.W. Pitera, J.D. Madura, T.J. Dick, G.L. Hura, T. Head-Gordon, J. Chem. Phys. 120, 9665 (2004)

    Article  ADS  Google Scholar 

  26. P.E. Krouskop, J.D. Madura, D. Paschek, A. Krukau, J. Chem. Phys. 124, 016102 (2006)

    Article  ADS  Google Scholar 

  27. Y. Mao, Y. Zhang, Chem. Phys. Lett. 542, 37 (2012)

    Article  ADS  Google Scholar 

  28. A.P. Markesteijn, R. Hartkamp, S. Luding, J. Westerweel, J. Chem. Phys. 136, 134104 (2012)

    Article  ADS  Google Scholar 

  29. J. Holzmann, R. Ludwig, A. Geiger, D. Paschek, Angewandte Chemie International Edition 46, 8907 (2007)

    Article  Google Scholar 

  30. I.S. Joung, T.E. Cheatham III, J. Phys. Chem. B 113, 13279 (2009)

    Article  Google Scholar 

  31. S. Deublein, J. Vrabec, H. Hasse, J. Chem. Phys. 136, 084501 (2012)

    Article  ADS  Google Scholar 

  32. S. Nosé, Molec. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  33. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  34. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)

    Article  ADS  Google Scholar 

  35. S. Nosé, M.L. Klein, Molec. Phys. 50, 1055 (1983)

    Article  ADS  Google Scholar 

  36. D. Paschek, A. Geiger, MOSCITO 4 – User's Guide and Manual (2003)

  37. T. Köddermann, D. Paschek, R. Ludwig, J. Chem. Phys. Phys. Chem. 8, 2464 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Hülsmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfgen, R., Hülsmann, M., Krämer, A. et al. Optimized atomistic force fields for aqueous solutions of Magnesium and Calcium Chloride: Analysis, achievements and limitations. Eur. Phys. J. Spec. Top. 225, 1391–1409 (2016). https://doi.org/10.1140/epjst/e2016-60112-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60112-7

Navigation