Skip to main content
Log in

Ferromagnetic mass fixed on a spring and subjected to an electromagnet powered by self-sustained oscillators

  • Regular Article
  • Bifurcations and Chaos
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The study of a ferromagnetic mass, fixed on a spring and subjected to an electromagnet powered by a Van der Pol (VDP) oscillator and by a Hindmarsh-Rose (HR) oscillator is performed, to serve as an electromechanical devices, but also to mimic the action of a natural pacemaker and nerves on a cardiac assist device or artificial heart. The excitation with the VDP oscillator shows in the mechanical part the transition from harmonic, periodic, biperiodic up to bursting oscillations, high displacement without pull-in instability in the free dynamics regime. Under DC plus square wave excitation, there is a coexistence of the bursting oscillations of the free dynamics and the one of the modulated dynamics. Considering the action of a HR oscillator, it is found transition from spikes, bursting oscillations, relaxation spikes, multiperiodic and sinusoidal oscillations under DC or DC plus square wave excitation. These electrical behaviors are transferred to the mechanical part which can then adopt spiking or bursting dynamics as the HR oscillator. For this electromechanical model, the VDP oscillator is more efficient than the HR oscillator to induce pulsatile pumping function with higher amplitude and to react to external influences without pull-in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tsatsos, Theoretical and Numerical Study of the Van der Pol equation (Aristotle University, Thessaloniki, 2006)

  2. R. Mettin, U. Parlitz, W. Lauterborn, Int. J. Bif. Chaos 3, 1529 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Simo, P. Woafo, Int. J. Bif. Chaos 22, 1250003 (2012)

    Article  Google Scholar 

  4. S.L. Mc Murran, J.J. Tattersall, Contemp. Math. 208, 265 (1997)

    Article  MathSciNet  Google Scholar 

  5. C.A. Kitio Kwuimy, B. Nana, P. Woafo, J. Sound Vib. 329, 3137 (2010)

    Article  ADS  Google Scholar 

  6. H. Simo, P. Woafo, Mech. Res. Commun. 38, 537 (2011)

    Article  MATH  Google Scholar 

  7. D.B. Forger, M.E. Jewett, R.E. Kronauer, J. Biol. Rhythms 14, 533 (1999)

    Article  Google Scholar 

  8. P.F. Rowat, A.I. Selverston, J. Neurophys. 70, 1030 (1993)

    Google Scholar 

  9. B. Van Der Pol, J. Van Der Mark, Philos. Mag. 6, 763 (1928)

    Article  Google Scholar 

  10. S.R.F.S.M. Gois, M.A Savi, Chaos, Soliton Fract. 41, 2553 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D.M. Sacknoff, G.W. Gleim, N. Stachenfeld, N.L. Coplan, Am. Heart J. 127, 1275 (1994)

    Article  Google Scholar 

  12. K. Umetani, D.H. Singer, R. McCraty, M. Atkinson, J. Am. Coll. Cardiol. 31, 593 (1998)

    Article  Google Scholar 

  13. M. Gawlikowski, T. Pustelny, R. Kustosz, Eur. Phys. J. Special Topics 154, 65 (2008)

    Article  ADS  Google Scholar 

  14. T. Pustelny, P. Struk1, Z. Nawrat, M. Gawlikowski, Eur. Phys. J. Special Topics 154, 175 (2008)

    Article  ADS  Google Scholar 

  15. X. Han, Q. Bi, Commun. Nonlinear Sci. Numer. Simul. 16, 4146 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. E.A. Rose, A.C. Gelijns, A.J. Moskowitz, D.F. Heitjan, L.W. Stevenson, W. Dembitsky, J.W. Long, D.D. Ascheim, A.R. Tierney, R.G. Levitan, J.T. Watson, P. Meier, New. Engl. J. Med. 345, 1435 (2001)

    Article  Google Scholar 

  17. M.C. Oz, M. Argenziano, K.A. Catanese, M.T. Gardocki, D.J. Goldstein, R.C. Ashton, A.C. Gelijns, E.A. Rose, H.R. Levin, Circ. 95, 1844 (1997)

    Article  Google Scholar 

  18. M.I. Rabinovich, H.D.I. Abarbanel, R. Huerta, R. Elson, A. Selverston, IEEE Trans. Circ. Syst. 44, 997 (1997)

    Article  MathSciNet  Google Scholar 

  19. J.-M Gonzalez-Miranda, Chaos 13, 845 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. C.T. Leondes, MEMS/NEMS:Handbook Techniques and Applications.Manufacturing Methods (Springer, New York, 2006)

  21. J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS (Chapman and Hall/CRC, 2003)

  22. L.T. Abobda, P. Woafo, Commun. Nonlinear Sci. Numer. Simulat. 17, 3082 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  23. J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. Lond. 221, 87 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Woafo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abobda, L.T., Woafo, P. Ferromagnetic mass fixed on a spring and subjected to an electromagnet powered by self-sustained oscillators. Eur. Phys. J. Spec. Top. 223, 2885–2895 (2014). https://doi.org/10.1140/epjst/e2014-02301-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02301-1

Keywords

Navigation