Skip to main content
Log in

Nonlinear dynamics of complex hysteretic systems: Oscillator in a magnetic field

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Complex hysteresis is a well-known phenomenon in many branches of science. The most prominent examples come from materials with a complex microscopic structure such as magnetic materials, shape-memory alloys, or, porous materials. Their hysteretic behavior is characterized by the existence of multiple internal system states for a given external parameter and by a non-local memory. The input-output behavior of such systems is well studied and in a standard phenomenological approach described by the so-called Preisach operator. What is not well understood, are situations, where such a hysteretic system is dynamically coupled to its environment. Since the hysteretic sub-system provides a complicated form of nonlinearity, one expects non-trivial, possibly chaotic behavior of the combined dynamical system. We study such a combined dynamical system with hysteretic nonlinearity. In this original contribution a simple differential-operator equation with hysteretic damping, which describes a magnetic pendulum is considered. We find, for instance, a fractal dependence of the asymptotic behavior as function of the starting values. The sensitivity of the system to perturbations is investigated by several methods, such as the 0–1 test for chaos and sub-Lyapunov exponents. The power spectral density is also calculated and compared with analytical results for simple input-output scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bertotti, I.D. Mayergoyz (eds.), The Science of Hysteresis, Vols. 1–3 (Academic Press, 2006)

  2. G. Bertotti, Hysteresis in Magnetism (Academic, New York, 1998)

  3. E. Della Torre, Magnetic Hysteresis (IEEE, New York, 1999)

  4. J. Ortin, J. Appl. Phys. 71, 1454 (1992)

    Article  ADS  Google Scholar 

  5. C. Song, J.A. Brandon, C.A. Featherston, J. Mech. Eng. Sci. 215, 673 (2001)

    Article  Google Scholar 

  6. P. Ge, M. Jouaneh, Precis. Eng. 17, 211 (1995)

    Article  Google Scholar 

  7. I.D. Mayergoyz, T.A. Keim, J. Appl. Phys. 67, 5466 (1990)

    Article  ADS  Google Scholar 

  8. M. Sjöström, D. Djukic, B. Dutoit, IEEE Trans. Appl. Supercond. 10, 1585 (2000)

    Article  Google Scholar 

  9. D. Flynn, H. McNamara, P. O’Kane, A. Pokrovskii, Application of the Preisach Model to Soil-Moisture Hysteresis, in Ref. [1], Vol. 3, p. 689

  10. M.P. Lilly, P.T. Finley, R.B. Hallock, Phys. Rev. Lett. 71, 4186 (1993)

    Article  ADS  Google Scholar 

  11. R.A. Guyer, K.R. McCall, G.N. Boitnott, Phys. Rev. Lett. 74, 3491 (1995)

    Article  ADS  Google Scholar 

  12. M. Göcke, J. Econ. Surv. 16, 167 (2002)

    Article  Google Scholar 

  13. H.A. Mc Namara, A.V. Pokrovskii, Physica B 372, 202 (2006)

    Article  ADS  Google Scholar 

  14. P. Weiss, J. de Freudenreich, Arch. Sci. Phys. Nat. 42, 449 (1916)

    Google Scholar 

  15. F. Preisach, Z. Phys. 94, 277 (1935)

    Article  ADS  Google Scholar 

  16. I.D. Mayergoyz, Phys. Rev. Lett. 56, 1518 (1986)

    Article  ADS  Google Scholar 

  17. I.D. Mayergoyz, Mathematical Models of Hysteresis and their Applications (Elsevier, New York, 2003)

  18. M.A. Krasnoselskii, A.V. Pokrovskii, Systems with Hysteresis (Springer, Berlin, 1989)

  19. A. Visintin, Differential Models of Hysteresis (Springer, Berlin, 1994)

  20. M. Brokate, J. Sprekels, Hysteresis and Phase Transitions (Springer, New York, 1996)

  21. G. Litak, M. I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)

    Article  ADS  Google Scholar 

  22. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2003)

  23. S. Kodba, M. Perc, M. Marhl, Eur. J. Phys. 26, 205 (2005)

    Article  Google Scholar 

  24. A. Pokrovskii, O. Rasskazov, Numerical integration of ODEs with Preisach nonlinearity, Preprints of BCRI, UCC, Ireland, 2004

  25. M. Brokate, A. Pokrovskii, D. Rachinskii, O. Rasskazov, Differential equations with hysteresis via a canonical example, in Ref. [1], Vol. 1, p. 125

  26. Systems with Hysteresis, http://euclid.ucc.ie/hysteresis/

  27. G.A. Gottwald, I. Melbourne, Proc. R. Soc. Lond. A 460, 603 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. G.A. Gottwald, I. Melbourne, Physica D 212, 100 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. K. Kaneko, Progr. Theor. Phys. Suppl. 99, 263 (1989)

    Article  ADS  Google Scholar 

  30. G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Part I: Theory, Meccanica 15, 9 (1980)

    ADS  MATH  Google Scholar 

  31. G. Radons, Phys. Rev. Lett. 100, 240602 (2008)

    Article  ADS  Google Scholar 

  32. G. Radons, Phys. Rev. E 77, 061133 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Radons, Phys. Rev. E 77, 061134 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Radons, F. Heße, R. Lange, S. Schubert, On the dynamics of nonlinear hysteretic systems, in P.J. Plath and E.-Ch. Haß (eds.), Vernetzte Wissenschaften, Crosslinks in Natural and Social Sciences (Logos, Berlin, 2008), p. 271

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Radons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radons, G., Zienert, A. Nonlinear dynamics of complex hysteretic systems: Oscillator in a magnetic field. Eur. Phys. J. Spec. Top. 222, 1675–1684 (2013). https://doi.org/10.1140/epjst/e2013-01954-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01954-4

Keywords

Navigation