Skip to main content
Log in

Dynamical mean-field approach to materials with strong electronic correlations

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  2. Y. Tokura, N. Nagaosa, Science 288, 462 (2000)

    Article  ADS  Google Scholar 

  3. E. Dagotto, Science 309, 257 (2005)

    Article  ADS  Google Scholar 

  4. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    Article  ADS  Google Scholar 

  5. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  6. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  7. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  8. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  9. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  10. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  11. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  12. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001)

  13. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  14. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  15. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Kotliar, D. Vollhardt, Phys. Today 57, 53 (2004)

    Article  Google Scholar 

  17. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  18. M.I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Rev. Mod. Phys. 80, 315 (2008)

    Article  ADS  Google Scholar 

  19. V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, G. Kotliar, J. Phys. Condens. Matt. 9, 7359 (1997)

    Article  ADS  Google Scholar 

  20. A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    Article  ADS  Google Scholar 

  21. A.I. Lichtenstein, M.I. Katsnelson, G. Kotliar, in Electron Correlations and Materials Properties 2nd ed., edited by A. Gonis, N. Kioussis, M. Ciftan (Kluwer Academic/Plenum, New York, 2002), p. 428

  22. K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R.T. Scalettar, Th. Pruschke, V.I. Anisimov, D. Vollhardt, Psi-k Newsletter 56, 65 (2003)

    Google Scholar 

  23. K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R.T. Scalettar, Th. Pruschke, V.I. Anisimov, D. Vollhardt, Phys. Status Solidi B 243, 2599 (2006)

    Article  ADS  Google Scholar 

  24. K. Held, Adv. Phys. 56, 829 (2007)

    ADS  Google Scholar 

  25. K. Held, G. Keller, V. Eyert, D. Vollhardt, V.I. Anisimov, Phys. Rev. Lett. 86, 5345 (2001)

    Article  ADS  Google Scholar 

  26. E. Pavarini, S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, O.K. Andersen, Phys. Rev. Lett. 92, 176403 (2004)

    Article  ADS  Google Scholar 

  27. A.I. Poteryaev, A.I. Lichtenstein, G. Kotliar, Phys. Rev. Lett. 93, 086401 (2004)

    Article  ADS  Google Scholar 

  28. S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, Phys. Rev. Lett. 94, 026404 (2005)

    Article  ADS  Google Scholar 

  29. L. Chioncel, Ph. Mavropoulos, M. Lezaić, S. Blügel, E. Arrigoni, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. Lett. 96, 197203 (2006)

    Article  ADS  Google Scholar 

  30. K. Held, A.K. McMahan, R.T. Scalettar, Phys. Rev. Lett. 87, 276404 (2001)

    Article  ADS  Google Scholar 

  31. A.K. McMahan, K. Held, R.T. Scalettar, Phys. Rev. B 67, 075108 (2003)

    Article  ADS  Google Scholar 

  32. B. Amadon, S. Biermann, A. Georges, F. Aryasetiawan, Phys. Rev. Lett. 96, 066402 (2006); see also L.V. Pourovskii, B. Amadon, S. Biermann, A. Georges, Phys. Rev. B 76, 235101 (2007) where the authors discuss the problem of full self-consistency over the charge density in Γ-Ce and Ce2O3

    Article  ADS  Google Scholar 

  33. S.Y. Savrasov, G. Kotliar, E. Abrahams, Nature (London) 410, 793 (2001)

    Article  ADS  Google Scholar 

  34. X. Dai, S.Y. Savrasov, G. Kotliar, A. Migliori, H. Ledbetter, E. Abrahams, Science 300, 953 (2003)

    Article  ADS  Google Scholar 

  35. S.Y. Savrasov, G. Kotliar, Phys. Rev. B 69, 245101 (2004)

    Article  ADS  Google Scholar 

  36. M.I. KatsnelsonA.I. Lichtenstein, Phys. Rev. B 61, 8906 (2000)

    Article  ADS  Google Scholar 

  37. A.I. Lichtenstein, M.I. Katsnelson, G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001)

    Article  ADS  Google Scholar 

  38. J. Braun, J. Minár, H. Ebert, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. Lett. 97, 227601 (2006)

    Article  ADS  Google Scholar 

  39. A. Grechnev, I. Di Marco, M.I. Katsnelson, A.I. Lichtenstein, J. Wills, O. Eriksson, Phys. Rev. B 76, 035107 (2007)

    Article  ADS  Google Scholar 

  40. S. Chadov, J. Minár, M.I. Katsnelson, H. Ebert, D. Ködderitzsch, A.I. Lichtenstein, Europhys. Lett. 82, 37001 (2008)

    Article  ADS  Google Scholar 

  41. J. Kuneš, V.I. Anisimov, A.V. Lukoyanov, D. Vollhardt, Phys. Rev. B 75, 165115 (2007)

    Article  ADS  Google Scholar 

  42. J. Kuneš, V.I. Anisimov, S.L. Skornyakov, A.V. Lukoyanov, D. Vollhardt, Phys. Rev. Lett. 99, 156404 (2007)

    Article  ADS  Google Scholar 

  43. J. Kuneš, A.V. Lukoyanov, V.I. Anisimov, R.T. Scalettar, W.E. Pickett, Nature Materials 7, 198 (2008)

    Article  ADS  Google Scholar 

  44. J. Kuneš, Dm.M. Korotin, M.A. Korotin, V.I. Anisimov, P. Werner, Phys. Rev. Lett. 102, 146402 (2009)

    Article  ADS  Google Scholar 

  45. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)

    Article  ADS  Google Scholar 

  46. G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984)

    Article  ADS  Google Scholar 

  47. D.E. Eastman, J.L. Freeouf, Phys. Rev. Lett. 34, 395 (1975)

    Article  ADS  Google Scholar 

  48. Z.-X. Shen, C.K. Shih, O. Jepsen, W.E. Spicer, I. Lindau, J.W. Allen, Phys. Rev. Lett. 64, 2442 (1990)

    Article  ADS  Google Scholar 

  49. Z.-X. Shen, R.S. List, D.S. Dessau, B.O. Wells, O. Jepsen, A.J. Arko, R. Barttlet, C.K. Shih, F. Parmigiani, J.C. Huang, P.A.P. Lindberg, Phys. Rev. B 44, 3604 (1991)

    Article  ADS  Google Scholar 

  50. O. Tjernberg, S. Söderholm, G. Chiaia, R. Girard, U.O. Karlsson, H. Nylén, I. Lindau, Phys. Rev. B 54, 10245 (1996)

    Article  ADS  Google Scholar 

  51. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  52. V.I. Anisimov, D.E. Kondakov, A.V. Kozhevnikov, I.A. Nekrasov, Z.V. Pchelkina, J.W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, D. Vollhardt, Phys. Rev. B 71, 125119 (2005)

    Article  ADS  Google Scholar 

  53. J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)

    Article  ADS  Google Scholar 

  54. M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  55. A. Fujimori, F. Minami, S. Sugano, Phys. Rev. B 29, 5225 (1984)

    Article  ADS  Google Scholar 

  56. J. van Elp, H. Eskes, P. Kuiper, G.A. Sawatzky, Phys. Rev. B 45, 1612 (1992)

    Article  ADS  Google Scholar 

  57. S.V. Faleev, M. van Schilfgaarde, T. Kotani, Phys. Rev. Lett. 93, 126406 (2004)

    Article  ADS  Google Scholar 

  58. J.-L. Li, G.-M. Rignanese, S.G. Louie, Phys. Rev. B 71, 193102 (2005)

    Article  ADS  Google Scholar 

  59. S. Sharma, S. Shallcross, J.K. Dewhurst, E.K.U. Gross [arXiv:0912.1118]

  60. S. Kobayashi, Y. Nohara, S. Yamamoto, T. Kujiwara, Phys. Rev. B 70, 155112 (2008)

    Article  ADS  Google Scholar 

  61. C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Phys. Rev. B 79, 235114 (2009)

    Article  ADS  Google Scholar 

  62. F. Aryasetiawan, O. Gunnarsson, Phys. Rev. Lett. 74, 3221 (1995)

    Article  ADS  Google Scholar 

  63. M. Cococcioni, S. De Gironcoli, Phys. Rev. B 71, 035105 (2005)

    Article  ADS  Google Scholar 

  64. X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, D. Vollhardt, Phys. Rev. B 74, 195114 (2006)

    Article  ADS  Google Scholar 

  65. F. Manghi, C. Calandra, S. Ossicini, Phys. Rev. Lett. 73, 3129 (1994)

    Article  ADS  Google Scholar 

  66. R. Eder, Phys. Rev. B 76, 241103 (2007)

    Article  ADS  Google Scholar 

  67. Q. Yin, A. Gordienko, X. Wan, S.Y. Savrasov, Phys. Rev. Lett. 100, 066404 (2008)

    Article  ADS  Google Scholar 

  68. O. Miura, T. Fujiwara, Phys. Rev. B 77, 195124 (2008)

    Article  ADS  Google Scholar 

  69. This conceptual picture was suggested to one of us (JK) by J.W. Allen

  70. A. Laeuchli, P. Werner, Phys. Rev. B 80, 235117 (2009)

    Article  ADS  Google Scholar 

  71. H. Ishida, A. Liebsch, Phys. Rev. B 81, 054513 (2010)

    Article  ADS  Google Scholar 

  72. C.S. Yoo, B. Maddox, J.-H.P. Klepeis, V. Iota, W. Evans, A. McMahan, M.Y. Hu, P. Chow, M. Somayazulu, D. Häusermann, R.T. Scalettar, W.E. Pickett, Phys. Rev. Lett. 94, 115502 (2005)

    Article  ADS  Google Scholar 

  73. A.G. Gavriliuk, V.V. Struzhkin, I.S. Lyubutin, S.G. Ovchinnikov, M.Y. Hu, P. Chow, Phys. Rev. B 77, 155112 (2008)

    Article  ADS  Google Scholar 

  74. I.S. Lyubutin, S.G. Ovchinnikov, A.G. Gavriliuk, V.V. Struzhkin, Phys. Rev. B 79, 085125 (2009)

    Article  ADS  Google Scholar 

  75. R.E. Cohen, I.I. Mazin, D.G. Isaak, Science 275, 654 (1997)

    Article  Google Scholar 

  76. C.G. Shull, W.A. Strauser, E.O. Wollan, Phys. Rev. 83, 333 (1951)

    Article  ADS  Google Scholar 

  77. A. Fujimori, M. Saeki, N. Kimizuka, M. Taniguchi, S. Suga, Phys. Rev. B 34, 7318 (1986)

    Article  ADS  Google Scholar 

  78. C.-Y. Kim, C.-Y. Kim, M.J. Bedzyk, E.J. Nelson, J.C. Woicik, L.E. Berman, Phys. Rev. B 66, 085115 (2002)

    Article  ADS  Google Scholar 

  79. R.J. Lad, V.E. Henrich, Phys. Rev. B 39, 13478 (1989)

    Article  ADS  Google Scholar 

  80. S. Mochizuki, Phys. Status Solidi. A 41, 591 (1977)

    Article  ADS  Google Scholar 

  81. K.-H. Kim, S.-H. Lee, J.-S. Choi, J. Phys. Chem. Solids 46, 331 (1985)

    Article  ADS  Google Scholar 

  82. M.P. Pasternak, G.Kh. Rozenberg, G.Yu. Machavariani, O. Naaman, R.D. Taylor, R. Jeanloz, Phys. Rev. Lett. 82, 4663 (1999)

    Article  ADS  Google Scholar 

  83. G.Kh. Rozenberg, L.S. Dubrovinsky, M.P. Pasternak, O. Naaman, T. Le Bihan, R. Ahuja, Phys. Rev. B 65, 064112 (2002)

    Article  ADS  Google Scholar 

  84. H. Liu, W.A. Caldwell, L.R. Benedetti, W. Panero, R. Jeanloz, Phys. Chem. Miner. 30, 582 (2003)

    Article  ADS  Google Scholar 

  85. J. Badro, G. Fiquet, V.V. Struzhkin, M. Somayazulu, H.-K. Mao, G. Shen, T. Le Bihan, Phys. Rev. Lett. 89, 205504 (2002)

    Article  ADS  Google Scholar 

  86. Y. Noguchi, K. Kusaba, K. Fukuoka, Y. Syono, Geophys. Res. Lett. 23, 1469 (1996)

    Article  ADS  Google Scholar 

  87. Y. Mita, Y. Sakai, D. Izaki, M. Kobayashi, S. Endo, S. Mochizuki, Phys. Stat. Sol. (b) 223, 247 (2001)

    Article  ADS  Google Scholar 

  88. Y. Mita, D. Izaki, M. Kobayashi, S. Endo, Phys. Rev. B 71, 100101 (2005)

    Article  ADS  Google Scholar 

  89. J.R. Patterson, C.M. Aracne, D.D. Jackson, V. Malba, S.T. Weir, P.A. Baker, Y.K. Vohra, Phys. Rev. B 69, 220101 (2004)

    Article  ADS  Google Scholar 

  90. C.S. Yoo, B.R. Maddox, J.-H.P. Klepeis, V. Iota, W. Evans, A. McMahan, M. Hu, P. Chow, M. Somayazulu, D. Häusermann, R.T. Scalettar, W.E. Pickett, Phys. Rev. Lett. 94, 115502 (2005)

    Article  ADS  Google Scholar 

  91. J.-P. Rueff, A. Mattila, J. Badro, G. Vankò, A. Shukla, J. Phys.: Cond. Matt. 17, S717 (2005)

    Article  ADS  Google Scholar 

  92. P. Werner, A.J. Millis, Phys. Rev. Lett. 99, 126405 (2007)

    Article  ADS  Google Scholar 

  93. W.M. Xu, O. Naaman, G.Kh. Rozenberg, M.P. Pasternak, R.D. Taylor Phys. Rev. B 64, 094411 (2001)

    ADS  Google Scholar 

  94. D.J. Adams, B. Amadon, Phys. Rev. B 79, 115114 (2009)

    Article  ADS  Google Scholar 

  95. The problem of the equilibrium volume of a number of simple elements has also been addressed recently in I. Di Marco, J. Minár, S. Chadov, M.I. Katsnelson, H. Ebert, A.I. Lichtenstein, Phys. Rev. B 79, 115111 (2009) and Ref. [96]

    Article  ADS  Google Scholar 

  96. A. Kutepov, S.Y. Savrasov, G. Kotliar, Phys. Rev. B 80, 041103 (2009)

    Article  ADS  Google Scholar 

  97. H.A. Jahn, E. Teller, Proc. R. Soc. London Ser. A 161, 220 (1937)

    Article  MATH  ADS  Google Scholar 

  98. D.I. Khomskii, K.I. Kugel, Solid State Comm. 13, 763 (1973)

    Article  ADS  Google Scholar 

  99. K.I. Kugel, D.I. Khomskii, Sov. Phys. Solid State 17, 285 (1975)

    Google Scholar 

  100. K.I. Kugel, D.I. Khomskii, Sov. Phys. JETP 52, 501 (1981)

    ADS  Google Scholar 

  101. K.I. Kugel, D.I. Khomskii, Sov. Phys. Usp. 25, 231 (1982)

    Article  ADS  Google Scholar 

  102. O.K. Andersen, Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  103. O.K. Andersen, T. Saha-Dasgupta, Phys. Rev. B 62, R16219 (2000)

    Article  ADS  Google Scholar 

  104. I. Leonov, N. Binggeli, Dm. Korotin, V.I. Anisimov, N. Stojić, D. Vollhardt, Phys. Rev. Lett. 101, 096405 (2008)

    Article  ADS  Google Scholar 

  105. I. Leonov, Dm. Korotin, N. Binggeli, V.I. Anisimov, D. Vollhardt, Phys. Rev. B 81, 075109 (2010)

    Article  ADS  Google Scholar 

  106. G. Trimarchi, I. Leonov, N. Binggeli, Dm. Korotin, V.I. Anisimov, J. Phys.: Condens. Matter 20, 135227 (2008)

    Article  ADS  Google Scholar 

  107. Dm. Korotin, A.V. Kozhevnikov, S.L. Skornyakov, I. Leonov, N. Binggeli, V.I. Anisimov, G. Trimarchi, Eur. Phys. J. B 65, 91 (2008)

    Article  ADS  Google Scholar 

  108. B. Amadon, F. Lechermann, A. Georges, F. Jollet, T.O. Wehling, A.I. Lichtenstein, Phys. Rev. B 77, 205112 (2008)

    Article  ADS  Google Scholar 

  109. For a formulation of LDA+D MFT within a mixed-basis pseudopotential approach seeF. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M. Posternak, A. Yamasaki, O.K. Andersen, Phys. Rev. B 74, 125120 (2006)

    Article  ADS  Google Scholar 

  110. To describe the thermodynamics of solids one must, in principle, also compute the entropy, consider the electronic, magnetic and lattice (vibrational) contributions in the Gibbs free energy. The first two contributions are generally small and can be neglected in the paramagnetic phase of a wide-band insulator, whereas the lattice entropy may have an influence on a structural phase transition. To estimate its contribution would require to perform molecular dynamics calculations for a correlated system. This is a very demanding project which we plan to do in the future.

  111. S. Kadota, I. Yamada, S. Yoneyama, K. Hirakawa, J. Phys. Soc. Jpn. 23, 751 (1967)

    Article  ADS  Google Scholar 

  112. R.H. Buttner, E.N. Maslen, N. Spadaccini, Acta Cryst. B 46, 131 (1990)

    Article  Google Scholar 

  113. J.B. Goodenough, Magnetism and the Chemical Bond (Interscience, New York, 1963)

  114. J.E. Medvedeva, M.A. Korotin, V.I. Anisimov, A.J. Freeman, Phys. Rev. B 65, 172413 (2002)

    Article  ADS  Google Scholar 

  115. E. Pavarini, E. Koch, A.I. Lichtenstein, Phys. Rev. Lett. 101, 266405 (2008)

    Article  ADS  Google Scholar 

  116. N. Binggeli, M. Altarelli, Phys. Rev. B 70, 085117 (2004)

    Article  ADS  Google Scholar 

  117. In general, GGA tends to give better results than LDA for the electronic and structural properties of complex oxides and related materials. SeeD.R. Hamann, Phys. Rev. Lett. 76, 660 (1996) and Ref. [118]

    Article  ADS  Google Scholar 

  118. H. Sawada, Y. Morikawa, K. Terakura, N. Hamada, Phys. Rev. B 56, 12154 (1997)

    Article  ADS  Google Scholar 

  119. M.T. Hutchings, E.J. Samuelsen, G. Shirane, K. Hirakawa, Phys. Rev. 188, 919 (1969)

    Article  ADS  Google Scholar 

  120. T. Ueda, K. Sugawara, T. Kondo, I. Yamada, Solid State Commun. 80, 801 (1991)

    Article  ADS  Google Scholar 

  121. I. Yamada, H. Fujii, M. Hidaka, J. Phys. Condens. Matter 1, 3397 (1989)

    Article  ADS  Google Scholar 

  122. M.V. Eremin, D.V. Zakharov, H.-A. Krug von Nidda, R.M. Eremina, A. Shuvaev, A. Pimenov, P. Ghigna, J. Deisenhofer, A. Loidl, Phys. Rev. Lett. 101, 147601 (2008)

    Article  ADS  Google Scholar 

  123. J. Deisenhofer, I. Leonov, M.V. Eremin, Ch. Kant, P. Ghigna, F. Mayr, V.V. Iglamov, V.I. Anisimov, D. van der Marel, Phys. Rev. Lett. 101, 157406 (2008)

    Article  ADS  Google Scholar 

  124. L. Paolasini, R. Caciuffo, A. Sollier, P. Ghigna, M. Altarelli, Phys. Rev. Lett. 88, 106403 (2002)

    Article  ADS  Google Scholar 

  125. R. Caciuffo, L. Paolasini, A. Sollier, P. Ghigna, E. Pavarini, J. van den Brink, M. Altarelli, Phys. Rev. B 65, 174425 (2002)

    Article  ADS  Google Scholar 

  126. Calculations have been performed using the Quantum ESPRE SSO package, see Ref. [11, 12], http://www.quantum-espresso.org

  127. The local coordinate system is chosen with the z direction defined along the longest (in ab plane) Cu-F bond of the CuF6 octahedron.

  128. Here we perform DMFT calculations for a fixed DFT Hamiltonian ĤDFT, thereby neglecting full charge self-consistency which is not expected to change the results significantly [32].

  129. To simplify the computation we neglected the orbital off-diagonal elements of the local Green function by applying an additional transformation into the local basis set with a diagonal density matrix during each DMFT iteration

  130. J. B.A.A. Elemans, B. van Laar, K.R. van der Veen, B.O. Loopstra, J. Phys. Chem. Solids 3, 238 (1971)

    Google Scholar 

  131. J. Rodriguez-Carvajal, M. Hennion, F. Moussa, A.H. Moudden, L. Pinsard, A. Revcolevschi, Phys. Rev. B 57, R3189 (1998)

    Article  ADS  Google Scholar 

  132. T. Chatterji, F. Fauth, B. Ouladdiaf, P. Mandal, B. Ghosh, Phys. Rev. B 68, 052406 (2003)

    Article  ADS  Google Scholar 

  133. G. Trimarchi, N. Binggeli, Phys. Rev. B 71, 035101 (2005)

    Article  ADS  Google Scholar 

  134. Th. Pruschke, M.B. Zölfl, Advances in Solid State Physics 40, 251 (2000); see also R. Peters, Th. Pruschke, cond-mat/0908.3990, where the authors discuss the interplay of orbital and spin degrees of freedom in the two orbital Hubbard model near quarter filling

    Article  Google Scholar 

  135. A. Yamasaki, M. Feldbacher, Y.-F. Yang, O.K. Andersen, K. Held, Phys. Rev. Lett. 96, 166401 (2006)

    Article  ADS  Google Scholar 

  136. K. Held, O.K. Andersen, M. Feldbacher, A. Yamasaki, Y.-F. Yang, J. Phys.: Condens. Matter 20, 064202 (2008)

    Article  ADS  Google Scholar 

  137. E. Pavarini, E. Koch, cond-mat/0904.4603

  138. W.-G. Yin, D. Volja, W. Ku, Phys. Rev. Lett. 96, 116405 (2006)

    Article  ADS  Google Scholar 

  139. The local coordinate system is chosen such that the GGA Mn 3d density matrix has a diagonal form.

  140. A.J. Millis, B.I. Shraiman, R. Mueller, Phys. Rev. Lett. 77, 175 (1996)

    Article  ADS  Google Scholar 

  141. K. Held, D. Vollhardt, Phys. Rev. Lett. 84, 5168 (2000)

    Article  ADS  Google Scholar 

  142. I.A. Nekrasov, K. Held, G. Keller, D.E. Kondakov, T. Pruschke, M. Kollar, O.K. Andersen, V.I. Anisimov, D. Vollhardt, Phys. Rev. B 73, 155112 (2006)

    Article  ADS  Google Scholar 

  143. O. Gunnarsson, O.K. Andersen, O. Jepsen, J. Zaanen, Phys. Rev. B 39, 1708 (1989)

    Article  ADS  Google Scholar 

  144. K. Byczuk, M. Kollar, K. Held, Y.-F. Yang, I.A. Nekrasov, T. Pruschke, D. Vollhardt, Nature Physics 3, 168 (2007)

    Article  ADS  Google Scholar 

  145. T. Yoshida, K. Tanaka, H. Yagi, A. Ino, H. Eisaki, A. Fujimori, Z.-X. Shen, Phys. Rev. Lett. 95, 146404 (2005)

    Article  ADS  Google Scholar 

  146. M. Takizawa, M. Minohara, H. Kumigashira, D. Toyota, M. Oshima, H. Wadati, T. Yoshida, A. Fujimori, M. Lippmaa, M. Kawasaki, H. Koinuma, G. Sordi, M. Rozenberg, Phys. Rev. B 80, 235104 (2009)

    Article  ADS  Google Scholar 

  147. A. Toschi, M. Capone, C. Castellani, K. Held, Phys. Rev. Lett. 102, 076402 (2009)

    Article  ADS  Google Scholar 

  148. C. Raas, P. Grete, G.S. Uhrig, Phys. Rev. Lett. 102, 076406 (2009)

    Article  ADS  Google Scholar 

  149. A. Hofmann, X.Y. Cui, J. Schäfer, S. Meyer, P. Höpfner, C. Blumenstein, M. Paul, L. Patthey, E. Rotenberg, J. Bünemann, F. Gebhard, T. Ohm, W. Weber, R. Claessen, Phys. Rev. Lett. 102, 187204 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vollhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuneš, J., Leonov, I., Kollar, M. et al. Dynamical mean-field approach to materials with strong electronic correlations. Eur. Phys. J. Spec. Top. 180, 5–28 (2009). https://doi.org/10.1140/epjst/e2010-01209-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01209-0

Keywords

Navigation