Skip to main content
Log in

Nonlinear waves over highly variable topography

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

This paper reviews the authors' recent work on water waves in heterogeneous media, namely nonlinear reduced models for water waves propagating over a region of highly variable depth. Both surface and internal waves are considered. Through different strategies for the mathematical modeling, at the level of equations, we show how diferent types of water wave models (namely systems of partial differential equations) can arise: weakly or fully dispersive, weakly or strongly nonlinear. The applications for these types of long waves are usually from Geophysics: in particular oceanography and meteorology. Here the emphasis is on coastal waves related to Physical Oceanography. An overview of the mathematical formulation is presented together with different asymptotic simplifications at the level of the partial differential equations (PDEs). References for recent work on the asymptotic analysis of solutions is also provided. These describe the regime where long pulse shaped waves propagate over rapidly varying topographic heterogeneities, which are modeled through rapidly varying coefficients in the PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Burridge, G. Papanicolaou, B. White, SIAM J. Appl. Math. 47, 146 (1987)

    Google Scholar 

  • C.C. Mei, The Applied Dynamics of Ocean Surface Waves (John Wiley, 1983)

  • P.G. Baines, Topographic Effects in Stratified Flows (Cambridge University Press, 1995)

  • European Centre for Medium-Range Weather Forecasts (ECMWF), Orography (1998)

  • D.H. Peregrine, J. Fluid Mech. 27, 815 (1967)

    Google Scholar 

  • A.B. Kennedy, J.T. Kirby, Q. Chen, R.A. Dalrymple, Wave Motion 33, 225 (2001)

    Google Scholar 

  • P.A. Madsen, R. Murray, O.R. Sørensen, Coastal Engg. 15, 371 (1991)

  • P.A. Madsen, O.R. Sørensen, Coastal Engg. 18, 183 (1992)

  • O. Nwogu, Coastal Ocean Engg. 119, 618 (1993)

  • Y. Matsuno, Phys. Rev. Lett. 69, 609 (1992)

    Google Scholar 

  • H.A. Schäffer, P.A. Madsen, Coastal Engg. 26, 1 (1995)

  • A. Nachbin, SIAM Appl. Math. 63, 905 (2003)

    Google Scholar 

  • J.C. Muñoz Grajales, A. Nachbin, SIAM J. Appl. Math. 64, 977 (2004)

  • J.C. Muñoz Grajales, A. Nachbin, SIAM Multiscale Model. Simul. 3, 680 (2005)

  • J.P. Fouque, J. Garnier, A. Nachbin, SIAM J. Appl. Math. 64, 1810 (2004)

    Google Scholar 

  • J.P. Fouque, J. Garnier, J.C. Muñoz, A. Nachbin, Phys. Rev. Lett. 92, 094502-1 (2004)

    Google Scholar 

  • J.R. Quintero, J.C. Muñoz Grajales, Meth. Appl. Anal. 11, 15 (2004)

  • J.C. Muñoz Grajales, A. Nachbin, IMA J. Appl. Math. 71, 600 (2006)

  • W. Artiles, A. Nachbin, Phys. Rev. Lett. 93, 234501 (2004)

    Google Scholar 

  • W. Artiles, A. Nachbin, Meth. Appl. Anal. 11, 1 (2004)

    Google Scholar 

  • C. Pires, M.A. Miranda, J. Geophys. Res. 106, 19733 (2001)

    Google Scholar 

  • G.B. Whitham, Linear and Nonlinear Waves (John Wiley, 1974)

  • R.R. Rosales, G.C. Papanicolaou, Stud. Appl. Math. 68, 89 (1983)

    Google Scholar 

  • T. Driscoll, http://www.math.udel.edu/ driscoll/software

  • T. Driscoll, L.N. Trefethen, Schwarz-Christoffel Mapping (Cambridge University Press, 2002)

  • M. Asch, W. Kohler, G. Papanicolaou, M. Postel, B. White, SIAM Rev. 33, 519 (1991)

    Google Scholar 

  • J.P. Fouque, A. Nachbin, SIAM Multiscale Model. Simul. 1, 609 (2003)

    Google Scholar 

  • J.P. Fouque, J. Garnier, A. Nachbin, Physica D 195, 324 (2004)

    Google Scholar 

  • J.P. Fouque, J. Garnier, G.C. Papanicolaou, K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media (Springer-Verlag, 2007) (to appear)

  • J. Garnier, A. Nachbin, Phys. Rev. Lett. 93, 154501 (2004)

    Google Scholar 

  • A. Nachbin, Modelling of Water Waves in Shallow Channels (Comp. Mech. Publ., Southampton, UK, 1993)

  • A. Nachbin, J. Fluid Mech. 296, 353 (1995)

    Google Scholar 

  • A. Nachbin, G.C. Papanicolaou, J. Fluid Mech. 241, 311 (1992)

    Google Scholar 

  • S.B. Yoon, P.L.F. Liu, J. Fluid Mech. 205, 397 (1989)

    Google Scholar 

  • J. Hamilton, J. Fluid Mech. 83, 289 (1977)

    Google Scholar 

  • J.G.B. Byatt-Smith, J. Fluid Mech. 49, 625 (1971)

    Google Scholar 

  • W. Craig, C. Sulem, J. Comput. Phys. 108, 73 (1993)

    Google Scholar 

  • Y. Matsuno, J. Fluid Mech. 249, 121 (1993)

    Google Scholar 

  • V.E. Zakharov, A.I. Dyachenko, O.A. Vasilyev, Euro. J. Mech. B/Fluids 21, 283 (2002)

    Google Scholar 

  • J.B. Keller, J. Fluid Mech. 489, 345 (2003)

    Google Scholar 

  • P. Guidotti, J. Comput. Phys. 190, 325 (2003)

    Google Scholar 

  • M.E. Taylor, Partial Differential Equations I: Basic Theory (Springer-Verlag, 1996)

  • K.M. Berger, P.A. Milewski, SIAM J. Appl. Math. 63, 1121 (2003)

    Google Scholar 

  • W. Choi, R. Camassa, J. Fluid Mech. 313, 83 (1996)

    Google Scholar 

  • H. Lamb, Hydrodynamics (Dover, 1932)

  • T.B. Benjamin, J. Fluid Mech. 25, 241 (1966)

    Google Scholar 

  • R.I. Joseph, J. Phys. A: Math. Gen. 10, L225 (1977)

  • K. Tung, T.F. Chan, T. Kubota, Stud. Appl. Math. 66, 1 (1982)

    Google Scholar 

  • T.B. Benjamin, J. Fluid Mech. 29, 559 (1967)

    Google Scholar 

  • H. Ono, J. Phys. Soc. Jpn. 39, 1082 (1975)

    Google Scholar 

  • Y. Matsuno, J. Phys. Soc. Jpn. 62, 1902 (1993)

  • W. Choi, R. Camassa, J. Fluid Mech. 396, 1 (1999)

    Google Scholar 

  • W. Choi, R. Camassa, Phys. Rev. Lett. 77, 1759 (1996)

    Google Scholar 

  • M. Miyata, Proc. IUTAM Symp. on Nonlinear Water Waves, edited by H. Horikawa, H. Maruo, 399 (1988)

  • R. Camassa, W. Choi, H. Michallet, P.-O. Rusås, J.K. Sveen, J. Fluid Mech. 549, 1 (2006)

    Google Scholar 

  • C.H. Su, C.S. Gardner, J. Math. Phys. 10, 536 (1969)

    Google Scholar 

  • A.E. Green, P.M. Naghdi, J. Fluid Mech. 78, 237 (1976)

    Google Scholar 

  • Y.A. Li, J.M. Hyman, W. Choi, Stud. Appl. Math. 113, 303 (2004)

    Google Scholar 

  • T. Jo, W. Choi, Stud. Appl. Math. 109, 205 (2002)

    Google Scholar 

  • J. Grue, H.A. Friis, E. Palm, P.O. Rusas, J. Fluid Mech. 351, 223 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachbin, A., Choi, W. Nonlinear waves over highly variable topography. Eur. Phys. J. Spec. Top. 147, 113–132 (2007). https://doi.org/10.1140/epjst/e2007-00205-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2007-00205-9

Keywords

Navigation