Skip to main content
Log in

Falkner-Skan flow of a magnetic-Carreau fluid past a wedge in the presence of cross diffusion effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Heat and mass transfer in the Falkner-Skan flow of a Carreau fluid past a wedge is investigated numerically. In most of the existing studies thermal radiation is linear. Due to the prominent importance of the various industrial applications, in this study we considered the nonlinear thermal radiation along with cross diffusion effects for the heat and mass transfer controlling process. Numerical results are presented graphically as well as in tabular form by enforcing Runge-Kutta and Newton's methods. We also validated the present results by comparing with the published results and found favourable agreement. We presented solutions for the flow separation, decelerating and accelerating cases. We observed that the thermal and concentration boundary layers are non-uniform for the flow separation, decelerating and accelerating cases. For industrial needs, we analysed the heat and mass transfer rates of the accelerating, decelerating and flow separation cases and found that the heat transfer rate is high in the accelerating case when compared with the decelerating case. From this we can conclude that the decelerating flow over a wedge is very useful for cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Falkner, S.W. Skan, SIAM. J. Appl. Math. 49, 1350 (1931)

    Google Scholar 

  2. K.P. Goyal, D.R. Kassoy, Int. J. Heat Mass Transf. 22, 1577 (1979)

    Article  ADS  Google Scholar 

  3. H.I. Hady F.M., Astrophys. Space Sci. 112, 381 (1985)

    Article  ADS  Google Scholar 

  4. H.I. Andersson, Int. J. Heat Fluid Flow 9, 241 (1988)

    Article  Google Scholar 

  5. A. Selim, M.A. Hossain, D.A.S. Rees, Int. J. Therm. Sci. 42, 973 (2003)

    Article  Google Scholar 

  6. M.A. Seddeek, A.A. Darwish, M.S. Abdelmeguid, Commun. Nonlinear Sci. Numer. Simulat. 12, 195 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Hayat, M. Hussain, S. Nadeem, S. Mesloub, Comp. Fluids 49, 22 (2011)

    Article  MathSciNet  Google Scholar 

  8. N.A. Yacob, A. Ishak, R. Nazar, I. Pop, Int. Commun. Heat Mass Transf. 38, 149 (2011)

    Article  Google Scholar 

  9. A. Postelnicu, I. Pop, Appl. Math. Comput. 217, 4359 (2011)

    MathSciNet  Google Scholar 

  10. M.M. Rashidi, M.T. Rastegari, M. Asadi, O.A. Bég, Chem. Eng. Commun. 199, 231 (2011)

    Article  Google Scholar 

  11. A.A. Afify, M.A.A. Bazid, J. Comput. Theor. Nanosci. 11, 1844 (2014)

    Article  Google Scholar 

  12. M. Ganapathirao, R. Ravindran, E. Momoniat, Heat Mass Transf. Waerme Stoffuebertrag. 51, 289 (2014)

    Article  ADS  Google Scholar 

  13. M. Turkyilmazoglu, J. Eng. Math. 92, 73 (2015)

    Article  MathSciNet  Google Scholar 

  14. W.A. Khan, R. Culham, R.U. Haq, J. Nanomater. 2015, 934367 (2015)

    Article  Google Scholar 

  15. I.L. Animasaun, C.S.K. Raju, N. Sandeep, Alex. Eng. J. 55, 1595 (2016)

    Article  Google Scholar 

  16. W.A. Khan, I. Pop, Math. Probl. Eng. 2013, 637285 (2013)

    MathSciNet  Google Scholar 

  17. C.S.K. Raju, N. Sandeep, S. Saleem, Eng. Sci. Technol. Int. J. 19, 875 (2016)

    Article  Google Scholar 

  18. H.R. Ashorynejad, M. Sheikholeslami, I. Pop, D.D. Ganji, Heat Mass Transf. Waerme Stoffuebertrag. 49, 427 (2013)

    Article  ADS  Google Scholar 

  19. F.M. Abbasi, T. Hayat, B. Ahmad, G.Q. Chen, PLoS ONE 9, 1 (2014)

    Article  Google Scholar 

  20. D. Pal, H. Mondal, J. Magn. & Magn. Mater. 331, 250 (2013)

    Article  ADS  Google Scholar 

  21. C.S.K. Raju, N. Sandeep, C. Sulochana, V. Sugunamma, M. Jayachandra Babu, Radiation, J. Nigerian Math. Soc. 34, 169 (2015)

    Article  Google Scholar 

  22. I.L. Animasaun, A.O. Oyem, Am. J. Comput. Math. 4, 357 (2014)

    Article  Google Scholar 

  23. M.A.A. Hamad, M. Ferdows, Appl. Math. Mech. 33, 923 (2012)

    Article  MathSciNet  Google Scholar 

  24. C.S.K. Raju, N. Sandeep, J. Mol. Liq. 215, 115 (2016)

    Article  Google Scholar 

  25. M. Ramzan, M. Farooq, T. Hayat, A. Alsaedi, J. Cao, J. Cent. South Univ. 22, 707 (2015)

    Article  Google Scholar 

  26. C.S.K. Raju, N. Sandeep, Alex. Eng. J. 55, 1115 (2016)

    Article  Google Scholar 

  27. P.M. Coelho, F.T. Pinho, J. Non-Newtonian Fluid Mech. 110, 143 (2003)

    Article  Google Scholar 

  28. S. Mukhopadhyay, I.C. Mondal, A.J. Chamkha, Heat Transf. Asian Res. 42, 665 (2013)

    Article  Google Scholar 

  29. K.A. Yih, Int. Commun. Heat Mass Transf. 26, 819 (1999)

    Article  Google Scholar 

  30. B.L. Kuo, Int. J. Heat Mass Transf. 48, 5036 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sandeep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, C.S.K., Sandeep, N. Falkner-Skan flow of a magnetic-Carreau fluid past a wedge in the presence of cross diffusion effects. Eur. Phys. J. Plus 131, 267 (2016). https://doi.org/10.1140/epjp/i2016-16267-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16267-3

Navigation