Skip to main content
Log in

SPES and the neutron facilities at Laboratori Nazionali di Legnaro

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of \( 10^{13}\) fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around \( A=130\) amu, with an expected beam intensity of \( 10^7\) - \( 10^9\) pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of \( 10^{14}\) n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Prete et al., EPJ Web of Conferences 66, 11030 (2014)

    Article  Google Scholar 

  2. T. Lamy et al., Rev. Sci. Instrum. 75, 1624 (2004)

    Article  ADS  Google Scholar 

  3. A. Dainelli et al., Nucl. Instrum. Methods A 382, 100 (1996)

    Article  ADS  Google Scholar 

  4. J. Esposito, The LARAMED project at INFN Legnaro National labs, poster contribution to NRC-8EuCheMS International Conference on Nuclear and Radiochemistry, September 2012, Como (Italy), https://indico.cern.ch/event/183405/session/26/contribution/69

  5. J. Esposito, The IFMIF EVEDA Low Power Beam Dump (LPBD) Design for LIPAc commissioning tests, LNL annual report 2014

  6. JEDEC, Measurement and reporting of alpha particle and terrestrial cosmic ray-induced soft errors in semiconductor devices, JEDEC Standard JESD89A (2006) available at: http://www.jedeq.org/

  7. S. Kamada, T. Itoga, Y. Unno, W. Takahashi, T. Oishi, M. Baba, Measurement of energy-angular neutron distribution of ^7Li, ^9Be(p,nx) reaction at $E_p=70$MeV and 11MeV, in Proceedings of International Conference on Nuclear Data for Science and Technology (2010)

  8. R. Nolte et al., Nucl. Instrum. Methods A 476, 369 (2002)

    Article  ADS  Google Scholar 

  9. J.M. Sisterson et al., Nucl. Instrum. Methods B 240, 617 (2005)

    Article  ADS  Google Scholar 

  10. S. Pomp, D.T. Barlett, S. Mayer, G. Reitz, S. Röttger, M. Silari, F.D. Smit, H. Vincke, H. Yasuda, High-energy quasi-monoenergetic neutron fields: existing facilities and future needs, EURADOS Report 2013-02

  11. D. Bisello, J. Esposito, P. Mastinu, G. Prete, L. Silvestrin, J. Wyss, Phys. Proc. 60, 271 (2014)

    Article  Google Scholar 

  12. D.B. Pelowitz, M.R. James, G.W. McKinney, J.W. Durkee, MCNPX 2.7.A Extensions (LANL, 2008)

  13. HeatWave Labs model HWEG-1079, provided by Atlair Technologies

  14. C. Ceballos, J. Esposito, S. Agosteo, P. Colautti, V. Conte, D. Moro, A. Pola, Appl. Radiat. Isot. 69, 1660 (2011)

    Article  Google Scholar 

  15. A. Pisent, M. Comunian, A. Palmieri, E. Fagotti, G.V. Lamanna, S. Mathot, The TRASCO SPES-RFQ, in Proceedings of LINAC 2004 conference, JaCoW, Lubeck, Germany (2005) pp. 69--71

  16. P.F. Mastinu, G. Martín Hernández, J. Praena, Nucl. Instrum. Methods A 601, 333 (2009)

    Article  ADS  Google Scholar 

  17. G. Martín-Hernández, P.F. Mastinu, J. Praena, N. Dzysiuk, R. Capote Noy, M. Pignatari, Appl. Radiat. Isot. 70, 1583 (2012)

    Article  Google Scholar 

  18. P. Mastinu, S. Marigo, Method for producing a heat exchanger and relevant heat exchanger, Patent Application Number PCT/IB2014/067156

  19. B. Bayanov, V. Belov, V. Kindyuk, E. Oparin, S. Taskaev, Appl. Radiat. Isot. 61, 817 (2004)

    Article  Google Scholar 

  20. S. Halfon et al., Rev. Sci. Instrum. 85, 056105 (2014)

    Article  ADS  Google Scholar 

  21. S. Halfon et al., Appl. Radiat. Isot. 88, 238 (2014)

    Article  Google Scholar 

  22. D. Bisello, A. Candelori, P. Giubilato, A. Kaminski, D. Pantano, R. Rando, M. Tessaro, J. Wyss, The SIRAD irradiation facility for bulk damage and single event effect studies, in Proceedings of RADECS (2003) p. 451

  23. J. Wyss, D. Bisello, D. Pantano, Nucl. Instrum. Methods A 462, 426 (2001)

    Article  ADS  Google Scholar 

  24. J.F. Ziegler, SRIM, Stopping and range of ions in matter, available at http://www.srim.org

  25. D. Bisello et al., Nucl. Instrum. Methods B 231, 65 (2005)

    Article  ADS  Google Scholar 

  26. D. Bisello, P. Giubilato, S. Mattiazzo, M. Nigro, D. Pantano, R. Rando, L. Silvestrin, M. Tessaro, J. Wyss, Nucl. Instrum. Methods B 266, 2142 (2008)

    Article  ADS  Google Scholar 

  27. S. Mattiazzo, D. Bisello, P. Giubilato, A. Kaminsky, D. Pantano, L. Silvestrin, M. Tessaro, J. Wyss, Nucl. Instrum. Methods A 685, 125 (2011)

    Article  ADS  Google Scholar 

  28. G. Busatto et al., Microelectron. Reliab. 51, 1995 (2011)

    Article  Google Scholar 

  29. L. Silvestrin, D. Bisello, G. Busatto, P. Giubilato, F. Iannuzzo, S. Mattiazzo, D. Pantano, A. Sanseverino, M. Tessaro, F. Velardi, J. Wyss, Nucl. Instrum. Methods B 273, 234 (2012)

    Article  ADS  Google Scholar 

  30. S. Gerardin, M. Bagatin, A. Paccagnella, D. Bisello, P. Giubilato, S. Mattiazzo, D. Pantano, L. Silvestrin, M. Tessaro, J. Wyss, V. Ferlet-Cavrois, IEEE Trans. Nucl. Sci. 60, 4136 (2013)

    Article  ADS  Google Scholar 

  31. A. Dainelli et al., Nucl. Instrum. Methods A 382, 100 (1996)

    Article  ADS  Google Scholar 

  32. Webpage of LNL accelerators, http://www.lnl.infn.it/accelerators/accelerators.html

  33. General Electric’s Inspection Technologies (formerly Seifert), www.gemeasurement.com

  34. D. Bisello, A. Candelori, A. Kaminski, A. Litovchenko, E. Noha, L. Stefanutti, Rad. Phys. Chem. 71, 713 (2004)

    Article  ADS  Google Scholar 

  35. http://www.nordion.com

  36. R. Rando, A. Bangert, D. Bisello, A. Candelori, P. Giubilato, M. Hirayama, R. Johnson, H.F.-W. Sadrozinsky, M. Sugizaki, J. Wyss, M. Ziegler, IEEE Trans. Nucl. Sci. 51, 1067 (2004)

    Article  ADS  Google Scholar 

  37. http://sirad.pd.infn.it/Co60_IF/co60.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Silvestrin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestrin, L., Bisello, D., Esposito, J. et al. SPES and the neutron facilities at Laboratori Nazionali di Legnaro. Eur. Phys. J. Plus 131, 72 (2016). https://doi.org/10.1140/epjp/i2016-16072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16072-0

Keywords

Navigation