Skip to main content
Log in

A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The present article aims to investigate the entropy effects in magnetohydrodynamic flow and heat transfer over an unsteady permeable stretching surface. The time-dependent partial differential equations are converted into non-linear ordinary differential equations by suitable similarity transformations. The solutions of these equations are computed analytically by the Homotopy Analysis Method (HAM) then solved numerically by the MATLAB built-in routine. Comparison of the obtained results is made with the existing literature under limiting cases to validate our study. The effects of unsteadiness parameter, magnetic field parameter, suction/injection parameter, Prandtl number, group parameter and Reynolds number on flow and heat transfer characteristics are checked and analysed with the aid of graphs and tables. Moreover, the effects of these parameters on entropy generation number and Bejan number are also shown graphically. It is examined that the unsteadiness and presence of magnetic field augments the entropy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bejan, Entropy generation through heat and fluid flow, 2nd edition (Wiley, New York, 1982)

  2. J.Y. San, Z. Laven, J. Heat Transfer 109, 647 (1987)

    Article  Google Scholar 

  3. V.S. Arpaci, A. Selamet, J. Thermophys. Heat Transfer 4, 404 (1990)

    Article  ADS  Google Scholar 

  4. S. Mahmud, R.A. Fraser, Int. J. Therm. Sci. 42, 177 (2003)

    Article  Google Scholar 

  5. M.Q.A. Odat, R.A. Damseh, M.A.A. Nimr, Entropy 4, 293 (2004)

    Article  Google Scholar 

  6. O.D. Makinde, Phys. Scr. 74, 642 (2006)

    Article  ADS  MATH  Google Scholar 

  7. O.D. Makinde, E. Osalusi, Mech. Res. Commun. 33, 692 (2006)

    Article  MATH  Google Scholar 

  8. O.D. Makinde, J. Mech. Sci. Tech. 24, 899 (2010)

    Article  Google Scholar 

  9. O.D. Makinde, O.A. Beg, J. Therm. Sci. 19, 72 (2010)

    Article  ADS  Google Scholar 

  10. A. Tamayol, K. Hooman, M. Bahrami, Transp. Porous Med. 85, 661 (2010)

    Article  MathSciNet  Google Scholar 

  11. K. Hooman, A. Ejlali, F. Hooman, Appl. Math. Mech. Engl. Ed. 29, 229 (2008)

    Article  MATH  Google Scholar 

  12. O.D. Makinde, Entropy 13, 1446 (2011)

    Article  ADS  Google Scholar 

  13. O.D. Makinde, Int. J. Exergy 10, 142 (2012)

    Article  Google Scholar 

  14. A.S. Butt, S. Munawar, A. Ali, A. Mehmood, World Appl. Sci. J. 17, 516 (2012)

    Google Scholar 

  15. A.S. Butt, S. Munawar, A. Ali, A. Mehmood, Z. Naturforsch. 67a, 451 (2012)

    Article  Google Scholar 

  16. A.S. Butt, S. Munawar, A. Ali, A. Mehmood, Phys. Scr. 85, 035008 (2012) DOI:10.1088/0031-8949/85/03/035008

    Article  ADS  Google Scholar 

  17. A.S. Butt, S. Munawar, A. Ali, A. Mehmood, J. Mech. Sci. Tech. 26, 2977 (2012)

    Article  Google Scholar 

  18. A.S. Butt, A. Ali, Chin. Phys. Lett. 30, 024701 (2013)

    Article  Google Scholar 

  19. S. Munawar, A. Mehmood, A. Ali, Phys. Scr. 86, 065401 (2012)

    Article  ADS  Google Scholar 

  20. L. Crane, Z. Angew. Math. Phys. 21, 645 (1970)

    Article  Google Scholar 

  21. P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977)

    Article  Google Scholar 

  22. J. Grubka, K.M. Bobba, Trans. ASME, J. Heat Transfer 107, 248 (1985)

    Article  Google Scholar 

  23. T.C. Chiam, Acta Mech. 122, 169 (1997)

    Article  MATH  Google Scholar 

  24. H.S. Takhar, A.J. Chamkha, G. Nath, Int. J. Eng. Sci. 38, 1303 (2000)

    Article  MATH  Google Scholar 

  25. A. Mehmood, A. Ali, ASME J. Heat Transfer 130, 121701 (2008)

    Article  Google Scholar 

  26. C.Y. Wang, Quart. Appl. Math. 48, 601 (1990)

    MATH  MathSciNet  Google Scholar 

  27. H.I. Andersson, J.B. Aarseth, B.S. Dandapat, Int. J. Heat Mass Transfer 43, 69 (2000)

    Article  MATH  Google Scholar 

  28. B.S. Dandapat, B. Santra, H.I. Andersson, Int. J. Heat Mass Transfer 46, 3009 (2003)

    Article  MATH  Google Scholar 

  29. E.M.A. Elbashbeshy, M.A.A. Bazid, Heat Mass Transfer 41, 1 (2004)

    Article  ADS  Google Scholar 

  30. A. Ali, A. Mehmood, Commun. Nonlinear Sci. Numer. Simulat. 13, 340 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. A. Ishak, R. Nazar, I. Pop, Nonlinear Anal. Real World Appl. 10, 2909 (2010)

    Article  MathSciNet  Google Scholar 

  32. O.D. Makinde, Braz. J. Chem. Eng. 29, 159 (2012)

    Article  Google Scholar 

  33. S.J. Liao, Beyond perturbation: Introduction to homotopy analysis method (Chapman and Hall, CRC Press, Boca Raton, 2003)

  34. A. Mehmood, A. Ali, T. Shah, Can. J. Phys. 86, 1079 (2008)

    Article  ADS  Google Scholar 

  35. A. Ali, A. Mehmood, Int. J. Nonlinear Sci. Numer. Simulat. 11, 511 (2010)

    Google Scholar 

  36. L.F. Shampine, J. Kierzenka, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, Tutorial Notes (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Saeed Butt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed Butt, A., Ali, A. A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet. Eur. Phys. J. Plus 129, 13 (2014). https://doi.org/10.1140/epjp/i2014-14013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14013-7

Keywords

Navigation