Skip to main content
Log in

Rights and wrongs of the temporal solar radius variability

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

From time immemorial men have strived to measure the size of celestial bodies. Among them, the diameter of the Sun was a source of curiosity and study. Tackled by Greek astronomers from a geometric point of view, an estimate, although incorrect, has been first determined, not truly called into question for several centuries. One must wait up to the XVIIth century to get the first precise determinations made by the French school of astronomy. Gradually, as the techniques were more and more sophisticated, many other solar diameter measurements were carried out, notably in England, Germany, Italy and US. However, even with instruments at the cutting edge of progress, no absolute value of the solar diameter has been provided yet, even if the community has adopted a canonical radius of 959.″63, given in all ephemeris since the end of the XIXth century. One of the major difficulties is to define a correct solar diameter. Another issue is the possible temporal variability of the size of the Sun, as first advocated at the end of the XIXth century by the Italian school. Today, this question is just on the way to being solved in spite of considerable efforts developed on ground-based facilities or on board space experiments. We will here give a review of some of the most remarkable techniques used in the past, emphasising how incorrect measurements have driven new ideas, leading to develop new statements for the underlying physics. On such new grounds, it can be speculated that the roundness of the Sun is not perfect, but developing a thin “cantaloupe skin” in periods of higher activity, with departures from sphericity being inevitably bounded by a few kilometers (around 80 km or 10 to 15 mas).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen. 2000. Astrophysical Quantities, A.N. Cox (Ed.), 4th edn., Springer

  2. Ambronn, L. 1906. Remarks on Mr. C.L. Poor’s Papers on the figure of the Sun. Astrophys. J. 23: 343-344

    Article  ADS  Google Scholar 

  3. Ambronn, L. and A.C.W. Schur. 1905. Die Messungen des Sonnendurchmessers an dem Repsold’schen 6-zoelligen Heliometer der Sternwarte zu Goettinge ausgefuhrt. Astronomische Mittheilungen der Koeniglichen Sternwarte zu Goettingen; 7. T. : Druck der Dieterich’schen Univ.-Buchdruckerei (W. Fr., 126 p.)

  4. Antia, H.M. and S. Basu. 2004. Temporal Variations in the Solar Radius. Proceedings of the SOHO 14–GONG 2004 Workshop (ESA SP–559), Helio- and Asteroseismology : Towards a Golden Future, edited by D. Danesy, New Haven, Connecticut, USA, p. 301

  5. Antia, H.M., S. Basu, J. Pintar and B. Pohl. 2010. Solar cycle variation in solar-f mode frequencies and radius. Sol. Phys. 192: 459-468

    Article  ADS  Google Scholar 

  6. Auwers, A. 1891. Der Sonnendurchmesser und der Venusdurchmesser nach den Beobachtungen an den Heliometern der deutschen Venus-Expeditionen. Astron. Nach. 128: 361-376

    Article  ADS  Google Scholar 

  7. Badache-Damiani, C. and J.P. Rozelot. 2006. Solar apparent radius variability : a new statistical approach to astrolabe multi-site observations, Month. Not. R. Astron. Soc. 369: 83-88

    Article  ADS  Google Scholar 

  8. Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki and J.W. Harder. 2011. Solar irradiance variability : a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys. 530: A71

    Article  ADS  Google Scholar 

  9. Basu, D. 1998. Radius of the Sun in relation to solar activity. Sol. Phys. 183: 291-294

    Article  ADS  Google Scholar 

  10. Bois, E. and J.-F. Girard. 1999. Impact of the Quadrupole Moment of the Sun on the Dynamics of the Earth-Moon System. Cel. Mech. 73: 329-338

    Article  ADS  MATH  Google Scholar 

  11. Brown, T.M. and J. Christensen-Dalsgaard. 1998. Accurate Determination of the Solar Photospheric Radius. Astrophys. J. Lett. 500: L195

    Article  ADS  Google Scholar 

  12. Brown, T.M., D.F. Elmore, L. Lacey and H. Hull. 1982. Solar diameter monitor : an instrument to measure long-term changes. Appl. Opt. 21: 3588-3596

    Article  ADS  Google Scholar 

  13. Bush, R.I., M. Emilio and J.R. Kuhn. 2010. On the Constancy of the Solar Diameter. III. Astrophys. J. 716: 1381-1385

    Article  ADS  Google Scholar 

  14. Callebaut, D.K., V.I. Makarov and A. Tlatov. 2002. Gravitational energy, solar radius and solar cycle, in Proceedings of the Second Solar Cycle and Space Weather Euroconference,24–29 September 2001, Vico Equense, Italy, edited by H. Sawaya-Lacoste, ESA SP-477, pp. 209-212

  15. Chapman, G.A., A.M. Cookson, J.J. Dobias and S.R. Walton. 1997. Variations in the Solar Radius during Solar Cycle 22. American Astronomical Society, 191st AAS Meeting, session 120.01. Bulletin of the American Astronomical Society 29: 1402

    ADS  Google Scholar 

  16. Chapman, G.A., A.M. Cookson, J.J. Dobias and S.R. Walton. 1999. A Search For Variations in the Solar Radius. American Astronomical Society, 194th AAS Meeting, session 93.02.. Bulletin of the American Astronomical Society 31: 988

    ADS  Google Scholar 

  17. Chapman, G.A., J.J. Dobias and S.R. Walton. 2008. On the variability of the apparent solar radius. Astrophys. J. 681: 1698-1702

    Article  ADS  Google Scholar 

  18. Chevalier, P.S. 1912. Note sur les diamètres polaire et équatorial du Soleil. Bulletin Astronomique, Série I 29: 473-475

    ADS  Google Scholar 

  19. Cimino, M. 1944. Un oscillazione ventiduennale nel diametro solare. Memoria presentata dall’Academico Pontificio Guiseppe Armellini nella Tornata il 12 agosto 1944. Commentationes VIII: 485-505

    Google Scholar 

  20. Cimino, M. 1946. Una conferma del ciclo solare ventiduennale dedotta delle oscillaziono dei diametri solari. Memoria presentata dall’Accademia dei Lincei il 18 aprile 1946, Roma (I) 1, 624-627

    Google Scholar 

  21. Costa, J.E.R., A.V.R. Silva, V.S. Makhmutov, E. Rolli, P. Kaufmann and A. Magun. 1999. Solar Radius Variations at 48 GHZ Correlated with Solar Irradiance. Astrophys. J. 520: L63-L66

    Article  ADS  Google Scholar 

  22. Coulter, R.L., J.R. Kuhn and H. Lin. 1996. The precision solar photometric telescopes. Bull. Am. Astron. Soc. 28: 911

    ADS  Google Scholar 

  23. Cullen, R.T. 1926. Diameters of the Sun observed at Greenwich, 1915-25. Mon. Not. Roy. Astron. Soc. 86: 344-349

    ADS  Google Scholar 

  24. Damé, L. et al. 2001. Picard, solar diameter, irradiance and climate, Euroconference on the Solar Cycle and Terrestrial Climate, September 25–29, 2000, Tenerife, Spain, ESA, SP-463, December 2000, pp. 223, 229

  25. Damiani-Badache, C., J.P. Rozelot, K. Coughlin and N. Kilifarska. 2007. Influence of the UTLS region on the astrolabes solar signal measurement. Month. Not. R. Astron. 380: 609-614

    Article  ADS  Google Scholar 

  26. Damiani, C., J.P. Rozelot, S. Lefebvre, A. Kilcik and A.K. Kosovichev. 2010. A brief history of the solar oblateness. A review. J. Atmos. Sol-Terr. Phys. 73: 241-250

    Article  ADS  Google Scholar 

  27. Danylevsky, V.O. 1999. The solar diameter determination from data of the 1991 July 11 solar eclipse photoelectric observation. Contrib. Astron. Obs. Skalnate Pleso 28: 201-209

    ADS  Google Scholar 

  28. Débarbat, S. 1987. La qualité des observations de Picard, in Picard et les débuts de l’Astronomie de précision au XVII e siècle. CNRS edition

  29. Delache, P., F. Laclare and H. Sadsaoud. 1985. Long period oscillations in solar diameter measurements. Nature 317: 416-418

    Article  ADS  Google Scholar 

  30. Delmas, C. 2003. Measurements of the Sun’s radius at Calern Observatory, in The Sun’s surface and subsurface, Lecture Notes in Physics, Vol. 599, edited by J.P. Rozelot. Springer (D), pp. 196-216

  31. Dicke, R.H. 1974. The Oblateness of the Sun. Astrophys. J. Suppl. Series 27: 131-182

    Article  ADS  Google Scholar 

  32. Dunham, D.W., S. Sofia, A.D. Fiala, P.M. Muller and D. Herald. 1980. Observations of a probable change in the solar radius between 1715 and 1979. Science 210: 1243-1245

    Article  ADS  Google Scholar 

  33. Dunham, D.W., J.R. Thompson, D.R. Herald, R. Buechner, A.D. Fiala, W.H. Warren Jr., and H.E. Bates. 2005. SORCE Science Meeting September 14–16, Durango, Colorado. (http://lasp.colorado.edu/sorce/news/2005ScienceMeeting/)

  34. Dziembowski, W.A., P.R. Goode, A.G. Kosovichev and J. Schou. 2000. Signatures of the Rise of Cycle 23. Astrophys. J. 537: 1026-1038

    Article  ADS  Google Scholar 

  35. Eddy, J.A. and A.A. Boornazian. 1979. Secular Decrease in the Solar Diameter, 1863–1953. Bulletin of the American Astronomical Society 12: 437

    ADS  Google Scholar 

  36. Egidi, A., B. Caccin, S. Sofia, W. Heaps, W. Hoegy and L. Twigg. 2006. High-Precision Measurements of the Solar Diameter and Oblateness by the Solar Disk Sextant (SDS) Experiment. Sol. Phys. 235: 407-418

    Article  ADS  Google Scholar 

  37. Emilio, M., J. Kuhn, R.I. Bush and P. Sherrer. 2000. On the constancy of the solar diameter. Astrophys. J. 543: 1007-1010

    Article  ADS  Google Scholar 

  38. Fazel, Z. 2007. Variabilité solaire : une approche globale tenant compte de l’hélioïde. Ph.D. Thesis. Nice University, p. 130

  39. Fazel, Z., J.P. Rozelot, S. Lefebvre, A. Ajabshirizadeh and S. Pireaux. 2008. Solar gravitational energy and luminosity variations. New Astronomy 13: 65-72

    Article  ADS  Google Scholar 

  40. Fiala, A.D., D.W. Dunham, D.W. David and S. Sofia. 1994. Variation of the solar diameter from solar eclipse observations 1715–1991. Sol. Phys. 152: 97-104

    Article  ADS  Google Scholar 

  41. Fortini, G., M. Cimino, G. Tarantini and M.A. Giannuzzi. 1950. Area delle macchie solari durante il secondo semestre del 1948 e durante l’anno 1949 secondo i rilievi fotografici giornalieri dell’ Osservatorio Astronomico di Roma. Memorie della Società Astronomia Italiana, Vol. 21, pp. 297-301

  42. Gething, P.J.D. 1955. Greenwich observations of the horizontal and vertical diameters of the Sun. Mon. Not. Roy. Astron. Soc. 115: 558-570

    ADS  Google Scholar 

  43. Giallanella, L. 1941. Le Variazioni del diametro solare nel sessanteno 1874–1937, secondo le osservazioni eseguite neel’osservatorio del Campidoglio. Memoria presentata dall’Academico Pontificio Guiseppe Armellini nella Tornata del 30 novembre 1941. Commentationes VI: 1139-1197

    Google Scholar 

  44. Giannuzi, M.A. 1953. Riduzione delle osservazioni dei diametro solari orizzontali (1851 al 1937). Memoria della Societa Astronomica Italiana, pp. 305-314

  45. Giannuzi, M.A. 1955. Riduzione delle osservazioni dei diametro solari verticali (1851 al 1937). Memoria della Societa Astronomica Italiana, pp. 447-454

  46. Gilliland, R.L. 1981. Solar radius variations over the past 265 years. Astrophys. J. 248: 1144-1155

    Article  ADS  Google Scholar 

  47. Gonzalez-Hernandez, I., P. Scherrer and F. Hill. 2009. A new way to infer variations of the seismic solar radius. Astrophys. J. 691: L87-L90

    Article  ADS  Google Scholar 

  48. Grillot, S. 1987. Picard observateur, in Picard et les débuts de l’Astronomie de précision au XVII e siècle. CNRS edition

  49. Haberreiter, M., W. Schmutz and A.G. Kosovichev. 2008a. Solving the Discrepancy between the Seismic and Photospheric Solar Radius. Astrophys. J. 675: L53-L56

    Article  ADS  Google Scholar 

  50. Haberreiter, M., W. Schmutz and W. Hubeny. 2008b. NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions. Astron. Astrophys. 492: 833-840

    Article  ADS  Google Scholar 

  51. Hayn, F. 1924. Die Gestalt der Sonne. Astronomische Nachrichten 220: 113-126

    Article  ADS  Google Scholar 

  52. Hill, H.A. and R.T. Stebbins. 1975a. The intrinsic visual oblateness of the Sun, Astrophys. J. 200: 471-483

    Article  ADS  Google Scholar 

  53. Hill, H.A., R.T. Stebbins and J.R. Oleson. 1975b. The Finite Fourier Transform Definition of an edge of the solar disk. Astrophys. J. 200: 484-498

    Article  ADS  Google Scholar 

  54. Hudson, H. and J.P. Rozelot. 2010. History of solar oblateness. http://sprg.ssl.berkeley.edu/˜tohban/wiki/index.php/History_of_Solar_oblateness

  55. Kepler, J. 1604. Ad Vitellionem Paralipomena, Quibus Astronomiae Pars Optica Traditur. Frankfurt, Chap. IX

  56. Kilcik, A., C. Sigismondi and J.P. Rozelot. 2009. Solar radius determination from total solar eclipse observation on March 29 2006. Sol. Phys. 257, pp. 237-250

    Google Scholar 

  57. Kilic, H., O. Golbasi and F. Chollet. 2005. Measurements of the solar radius in Antalaya between 2001–2003. Sol. Phys. 229: 5-12

    Article  ADS  Google Scholar 

  58. Kovalevsky, J. 1995. Modern Astrometry, Lecture Notes in Physics. Springer Verlag edition, 358, p. 294

  59. Kuhn, J.R., R.I. Bush, M. Emilio and P.H. Scherrer. 2004. On the Constancy of the Solar Diameter. II. Astrophys. J. 613: 1241-1252

    Article  ADS  Google Scholar 

  60. Laclare, F. 1983. Astrolabe measurements of the solar diameter. Astron. Astrophys. 125: 200-203

    ADS  Google Scholar 

  61. Laclare, F., C. Delmas, J.P. Coin and A. Irbah. 1996. Measurements and Variations of the Solar Diameter. Sol. Phys. 166 : 211-229

    Google Scholar 

  62. Laclare, F., C. Delmas and A. Irbah. 1999. Variations apparentes du diamètre solaire obervées à l’astrolabe solaire, 1975–1998. C. R. Acad. Sci. Paris 327 : II, 1107-1114

    Google Scholar 

  63. Lamy, A. 2010. PICARD, an innovative mission to study the Sun. CNES Magazine Suppl., 44, folio 05

  64. Lefebvre, S., L. Bertello, R.K. Ulrich, J.E. Boyden and J.P. Rozelot. 2006. Solar radius measurements at Mount Wilson Observatory. Astrophys. J. 649: 444-451

    Article  ADS  Google Scholar 

  65. Lefebvre, S. and A.K. Kosovichev. 2005. Changes in the subsurface stratification of the Sun with the 11-year activity cycle. Astrophys. J. 633: L149-L152

    Article  ADS  Google Scholar 

  66. Lefebvre, S., A. Kosovichev and J.P. Rozelot. 2007. Test of nonhomologous solar radius changes with the 11 year activity cycle. Astrophys. J. 658: L135-L138

    Article  ADS  Google Scholar 

  67. Lefebvre, S. and J.P. Rozelot. 2003. Influence of the Sun Radius Variability on Irradiance Modelling, ISCS meeting, Tatranska Lomnica, ESA-SP 535, pp. 53-56

  68. Lefebvre, S. and J.P. Rozelot. 2004. Solar latitudinal distortions : from theory to observations. Astron. Astrophys. 419: 1133-1140

    Article  ADS  Google Scholar 

  69. Leister, N.V. and P. Benevides-Soares. 1990. Variations du diamètre solaire. C. R. Acad. Sci. Paris 311: II, 399-404

    Google Scholar 

  70. Lejeune, A. 1947. La dioptre d’Archimède. Annales de la société scientifique de Bruxelles, Série I: 27-47

    Google Scholar 

  71. Le Monnier (de), P.C. 1741. Histoire Céleste ou Recueil des observations astronomiques faites par ordre du Roy. Briasson (Ed.), Paris

  72. Leone, S. 1973. Solar semi-diameter measurements made in 1971 on the basis of a photographic method. Mem. Soc. Astron. Ital., Nuova Ser. 43: 779-787

    ADS  Google Scholar 

  73. Li, L.H., P. Ventura, S. Basu, S. Sofia and P. Demarque. 2005. 2-D Stellar Evolution Code Including Arbitrary Magnetic Fields. Astrophys. J. Suppl. S. 164: 215-254

    Article  ADS  Google Scholar 

  74. Linton, C.M. 2005. From exodus to Einstein, Cambridge University Press, p. 516

  75. Livingston, W. and M. Penn. 2009. Are Sunspots Different During This Solar Minimum? Eos, Transactions American Geophysical Union 90: 257-258

    Article  ADS  Google Scholar 

  76. Maier, E., L. Twigg and S. Sofia. 1992. Preliminary results of a balloon flight of the solar disk sextant. Astrophys. J. 389: 447-452

    Article  ADS  Google Scholar 

  77. Mathews, P.M., T.A. Herring and B.A. Buffett. 2002. J. Geophys. Res. 107: B4, ETG 3-1

    Article  Google Scholar 

  78. Messier, C. 1766. Observations of the Eclipse of the Sun on the 16th of August 1765 made at Colombes (Paris). Philos. Trans. 56: 1-3

    Article  Google Scholar 

  79. Meyermann, B. 1950. Zur Pulsation der Sonne. Astron. Nach. 279: 45-46

    Article  ADS  Google Scholar 

  80. Morand, F. et al. 2010. Mesures du rayon solaire avec l’instrument Doraysol (1996–2006) sur le site de Calern. C. R. Acad. Sci. Paris 9: 660-673

    Google Scholar 

  81. Neckel, H. 1995. The solar radius derived from limb-darkening scans obtained in 1981 and from 1986 to 1990. Sol. Phys. 156: 7-16

    Article  ADS  Google Scholar 

  82. Noël, F. 2003. Solar astrometry at Santiago, in The Sun’s surface and subsurface, Lecture Notes In Physics, J.P. Rozelot (Ed.), Springer (D), Vol. 599, pp. 181-195

  83. Noël, F. 2004. Solar cycle dependence of the apparent radius of the Sun. Astron. Astrophys. 413: 725-732

    Article  ADS  Google Scholar 

  84. Noël, F. 2005. On solar radius variations observed with astrolabes. Solar Phys. 232: 127-141

    Article  ADS  Google Scholar 

  85. O’Dell, C.R. and A. Van Helden. 1987. How accurate were seventeenth-century measurements of solar diameter? Nature 330 : 629-631

  86. Pap, J., J.R. Kuhn, C. Fröhlich, R. Ulrich, A. Jones and J.P. Rozelot. 1998. Importance of monitoring solar global properties luminosity, radius and oscillations, ESA meeting “A crossroad for European Solar and Heliospheric Physics” held on 23–27 March 1998, Tenerife (Spain), ESA SP 417, pp. 267-271

  87. Parkinson, J.H. 1983. New measurements of the solar diameter. Nature 304: 518-520

    Article  ADS  Google Scholar 

  88. Parkinson, J.H., L.V. Morrison and F.R. Stephenson. 1980. The constancy of the solar diameter over the past 250 years. Nature 288: 548-551

    Article  ADS  Google Scholar 

  89. Picard, J. 1669. Memoir read at the Royal Academy of Sciences in Paris on the 24th of October, 1668, in Archives de l’Académie des Sciences, tome 3, folio 156

  90. Poor, C.L. 1905a. The figure of the Sun, Astrophys. J. 22: 103-114

    Article  ADS  Google Scholar 

  91. Poor, C.L. 1905b. The figure of the Sun II, Astrophys. J. 22: 305-317

    Article  ADS  Google Scholar 

  92. Ptolemy. 1948. Encyclopedia Britannica, Chicago, The Almagest, Book V., Vol. 14

  93. Ribes, E., J.C. Ribes and R. Barthalot. 1987. Evidence for a Larger Sun with a Slower Rotation during the Seventeenth Century. Nature 326: 52-55

    Article  ADS  Google Scholar 

  94. Ribes, E., J.C. Ribes, I. Vince and P. Merlin. 1988. A survey of historical and recent solar diameter observations. Adv. Sp. Res. 8: 129-132

    Article  ADS  Google Scholar 

  95. Rösch, J. and R. Yerle. 1983. Solar diameter(s). Solar Phys. 82: 139-150

    Article  ADS  Google Scholar 

  96. Rozelot, J.P. 2006. Comment on the paper Past, present and future measurements of the solar diameter. Adv. Space Res. 37: 1649-1650

    Article  ADS  Google Scholar 

  97. Rozelot, J.P. and E. Bois. 1997. New results concerning the solar oblateness and consequences on the solar interior, 18th NSO Workshop, Sacramento Peak, USA, Balasubramaniam (Ed.), in Conf. Pacif. Astro. Soc. 140 : 75-82

  98. Rozelot, J.P. and C. Damiani. 2011. History of solar oblateness measurements and interpretation. Eur. Phys. J. H 36: 407-436

    Article  Google Scholar 

  99. Sadžakov, S. and M. Dačić. 1988. Results of diurnal measurements for the Sun, Mercury, Venus and Mars obtained in the period 1984–1986. Bull. Obs. Astron. Belgr. 138: 78-84

    ADS  Google Scholar 

  100. Sanchez, M., F. Parra, M. Soler and R. Soto. 1995. L’astrolabe DU ROA. Observations Du Soleil en 1992 (Observations of the Sun at the ROA astrolabe in 1992). Astron. Astrophys. Suppl. 110: 351

    ADS  Google Scholar 

  101. Schou, J., H.M. Antia, S. Basu et al. 1998. Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505: 390-417

    Article  ADS  Google Scholar 

  102. Secchi, A. 1877. Le Soleil, Gauthier-Villars (Ed.), Paris, Vol. I, (428 p.) and II (484 p.)

  103. Secchi, A. and P. Rosa. 1872. C. R. Acad. Sci. Paris 75: 606

    Google Scholar 

  104. Selhorst, C.L., A.V.R. Silva and J.E.R. Costa. 2004. Radius variations over a solar cycle. Astronomy Astrophys. 420 : 1117-1121

    Google Scholar 

  105. Shapiro, A.E. 1975. Archimedes’s measurement of the Sun’s apparent diameter. J. History Astronomy 6: 75-83

    ADS  Google Scholar 

  106. Shapiro, I.I. 1980. Is the sun shrinking. Science 208: 51-53

    Article  ADS  Google Scholar 

  107. Sigismondi, C. and F. Fraschetti. 2001. Measurements of the solar diameter in Kepler’s time. The observatory 121: 380-385

    ADS  Google Scholar 

  108. Sofia, S., S. Basu, P. Demarque, L. Li and G. Thuillier. 2005a. The nonhomologous nature of Solar Diameter Variations. Astrophys. J. 632: L147-L150

    Article  ADS  Google Scholar 

  109. Sofia, S., D.W. Dunham, J.B. Dunham and A.D. Fiala. 1983. Solar radius change between 1925 and 1979. Nature 304: 522-526

    Article  ADS  Google Scholar 

  110. Sofia, S. and S.A. Endal. 1980. in The Ancient Sun, edited by Pepin, R.O., Eddy, J.A. and Merrill, R.B., Pergamon Press, New York, p. 139

  111. Sofia, S., M. Haberreiter and G. Thuillier. 2005b. Past, present and future measurements of the solar diameter. Adv. Space Res. 35: 329-340 (and corrigendum : Advances in Space Research 2006 37 : 439)

    Article  ADS  Google Scholar 

  112. Sofia, S. and L.H. Li. 2005c. Mechanisms for global solar variability. Memorie della Società Astronomica Italiana 76: 768-772

    ADS  Google Scholar 

  113. Sveshnikov, M.L. 2002. Solar Radius Variations from Transits of Mercury Across the Solar Disk. Astronomy Letters 28: 115-120

    Article  ADS  Google Scholar 

  114. Teleki, G., 1979. Refractional Influences in Astrometry and Geodesy, in Proc. IAU Symp. 89, edited by Tengström, E. and Teleki, G., Reidel, Dordrecht, p. 389

  115. Toulmonde, M. 1995. Études Comparatives de Diamètres Solaires Observés à partir d’Intsruments Astrométriques. Ph.D. thesis, Paris Observatory, p. 223

  116. Toulmonde, M. 1997. The Diameter of the Sun over the Past Three Centuries, Astron. Astrophys. 325: 1174-1178

    ADS  Google Scholar 

  117. Turck-Chièze, S. 2006. The rotation of the solar core, in The rotation of Sun and Stars, Lecture Notes in Physics. Springer, edited by Rozelot, J.P. and Neiner, V., Vol. 765, p. 123

  118. Turck-Chièze, S. and other 35 co-authors. 2009. The DynaMICCS perspective (A mission for a complete and continuous view of the Sun dedicated to magnetism, space weather and space climate). Experimental Astronomy (Special Issue on ESA’s Cosmic Vision) 23: 1017-1055

    Article  ADS  Google Scholar 

  119. Ulrich, R.K. and L. Bertello. 1995. Solar-cycle dependence of the Sun’s apparent radius in the neutral iron spectral line at 525 nm. Nature 377: 214-215

    Article  ADS  Google Scholar 

  120. Van Helden, A. 1985. Measuring the Universe, Cosmic Dimensions from Aristarchus to Halley. University of Chicago Press, p. 203

  121. Winnick, R.A., P. Demarque, S. Basu and D.B. Guenther. 2002. Appl. J 576: 1075

    Google Scholar 

  122. Wittmann, A.D. 1977. The diameter of the Sun. Astron. Astrophys. 61: 225-227

    ADS  Google Scholar 

  123. Wittmann, A.D. 1993. Detection of a significant change in the solar daimeter. Sol. Phys. 145: 205-206

    Article  ADS  Google Scholar 

  124. Wittmann, A.D. 1997. CCD-Drift Scan Measurements of the Solar Diameter : Method and First Results. Sol. Phys. 171: 231-237

    Article  ADS  Google Scholar 

  125. Wittmann, A.D. and M. Bianda. 2000. Drift-Time Measurements of the Solar Diameter 1990–2000 : New Limits on Constancy, in The solar cycle and terrestrial climate, Solar and space weather Euroconference, 25–29 September 2000, Santa Cruz de Tenerife, Tenerife, Spain, edited by A. Wilson. Noordwijk, Netherlands : ESA-SP, Vol. 463, p. 113

  126. Wittmann, A.D. and S. Débarbat. 1989. Die Sonnenedurchmesser und seine variabilität. Sterne und Weltraum 90: 420-426

    Google Scholar 

  127. Wittmann, A.D. and S. Débarbat. 1990. Le diamètre du Soleil est-il variable? L’Astronomie 104: 8-13

    ADS  Google Scholar 

  128. Wittmann, A.D. et al. 1998. Tobias Mayers Transitmessungen der Sonne (1756–1761). Eine Neuediskussion. Gauss Gesellschaft E.V. Göttingen Mitteilungen, Vol. 35, pp. 53-63

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.P. Rozelot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozelot, J., Damiani, C. Rights and wrongs of the temporal solar radius variability. EPJ H 37, 709–743 (2012). https://doi.org/10.1140/epjh/e2012-20030-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2012-20030-4

Keywords

Navigation