Skip to main content
Log in

Some implications of lepton flavor violating processes in a supersymmetric Type II seesaw model at TeV scale

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We have conceived a supersymmetric Type II seesaw model at TeV scale, which has some additional particles consisting of scalar and fermionic triplet Higgs states, whose masses are around a few hundred GeV. In this particular model, we have studied constraints on the masses of triplet states arising from the lepton flavor violating (LFV) processes, such as μ→3e and μ. We have analyzed the implications of these constraints on other observable quantities such as the muon anomalous magnetic moment and the decay patterns of scalar triplet Higgses. Scalar triplet Higgs states can decay into leptons and into supersymmetric fields. We have found that the constraints from LFV can affect these various decay modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See Ref. [42], for embedding of another variety of SUSY model in a supergravity setup.

  2. For a recent fit to the (g−2) μ in a model similar to the MSSM, see Ref. [53].

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  3. M.E. Peskin, In *Carry-le-Rouet 1996, High-energy physics*, pp. 49–142. arXiv:hep-ph/9705479

  4. G. Altarelli, Nucl. Instrum. Methods A 518, 1 (2004). arXiv:hep-ph/0306055

    Article  ADS  Google Scholar 

  5. C. Quigg, arXiv:hep-ph/0404228

  6. J. Ellis, Nucl. Phys. A 827, 187C (2009). arXiv:0902.0357 [hep-ph]

    Article  ADS  Google Scholar 

  7. T. Mori, eConf C 060409, 034 (2006). arXiv:hep-ex/0605116

    Google Scholar 

  8. J.M. Yang, Int. J. Mod. Phys. A 23, 3343 (2008). arXiv:0801.0210 [hep-ph]

    Article  ADS  Google Scholar 

  9. A.J. Buras, Acta Phys. Pol. Suppl. 3, 7 (2010). arXiv:0910.1481 [hep-ph]

    Google Scholar 

  10. Y. Nir, CERN Yellow Report CERN-2010-001, pp. 279–314. arXiv:1010.2666 [hep-ph]

  11. R.N. Mohapatra, arXiv:hep-ph/0211252 (see for a review on neutrino masses and mixing)

  12. Y. Grossman. arXiv:hep-ph/0305245

  13. A. Strumia, F. Vissani. arXiv:hep-ph/0606054

  14. M. Magg, C. Wetterich, Phys. Lett. B 94, 61 (1980)

    Article  ADS  Google Scholar 

  15. J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  16. R.N. Mohapatra, G. Senjanovic, Phys. Rev. D 23, 165 (1981)

    Article  ADS  Google Scholar 

  17. G. Lazarides, Q. Shafi, C. Wetterich, Nucl. Phys. B 181, 287 (1981)

    Article  ADS  Google Scholar 

  18. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  19. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  20. M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles (World Scientific, Singapore, 2004)

    Google Scholar 

  21. P. Binetruy, Supersymmetry (Oxford University Press, London, 2006)

    MATH  Google Scholar 

  22. H. Baer, X. Tata, Weak Scale Supersymmetry: from Superfields to Scattering Events (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  23. S.P. Martin, arXiv:hep-ph/9709356

  24. T. Hambye, E. Ma, U. Sarkar, Nucl. Phys. B 602, 23 (2001). arXiv:hep-ph/0011192

    Article  ADS  Google Scholar 

  25. A. Rossi, Phys. Rev. D 66, 075003 (2002). arXiv:hep-ph/0207006

    Article  ADS  Google Scholar 

  26. M. Hirsch, S. Kaneko, W. Porod, Phys. Rev. D 78, 093004 (2008). arXiv:0806.3361 [hep-ph]

    Article  ADS  Google Scholar 

  27. J.N. Esteves, J.C. Romao, A. Villanova del Moral, M. Hirsch, J.W.F. Valle, W. Porod, J. High Energy Phys. 0905, 003 (2009). arXiv:0903.1408 [hep-ph]

    Article  ADS  Google Scholar 

  28. S. Antusch, S.F. King, Phys. Lett. B 597, 199 (2004). arXiv:hep-ph/0405093

    Article  ADS  Google Scholar 

  29. E.J. Chun, S. Scopel, Phys. Lett. B 636, 278 (2006). arXiv:hep-ph/0510170

    Article  ADS  Google Scholar 

  30. M. Senami, K. Yamamoto, Int. J. Mod. Phys. A 21, 1291 (2006). arXiv:hep-ph/0305202

    Article  ADS  MATH  Google Scholar 

  31. A.G. Akeroyd, S. Moretti, Phys. Rev. D 86, 035015 (2012). arXiv:1206.0535 [hep-ph]

    Article  ADS  Google Scholar 

  32. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  33. E.J. Chun, K.Y. Lee, S.C. Park, Phys. Lett. B 566, 142 (2003). arXiv:hep-ph/0304069

    Article  ADS  Google Scholar 

  34. M. Kakizaki, Y. Ogura, F. Shima, Phys. Lett. B 566, 210 (2003). arXiv:hep-ph/0304254

    Article  ADS  Google Scholar 

  35. E.K. Akhmedov, W. Rodejohann, J. High Energy Phys. 0806, 106 (2008). arXiv:0803.2417 [hep-ph]

    ADS  Google Scholar 

  36. W. Rodejohann, Pramana 72, 217 (2009). arXiv:0804.3925 [hep-ph]

    Article  ADS  Google Scholar 

  37. A.G. Akeroyd, M. Aoki, H. Sugiyama, Phys. Rev. D 79, 113010 (2009). arXiv:0904.3640 [hep-ph]

    Article  ADS  Google Scholar 

  38. T. Fukuyama, H. Sugiyama, K. Tsumura, J. High Energy Phys. 1003, 044 (2010). arXiv:0909.4943 [hep-ph]

    Article  ADS  Google Scholar 

  39. M. Senami, K. Yamamoto, Phys. Rev. D 69, 035004 (2004). arXiv:hep-ph/0305203

    Article  ADS  Google Scholar 

  40. Z. Zhang, arXiv:0801.4905 [hep-ph] (see for a review on the muon (g−2))

  41. F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009). arXiv:0902.3360 [hep-ph]

    Article  ADS  Google Scholar 

  42. R.S. Hundi, S. Pakvasa, X. Tata, Phys. Rev. D 79, 095011 (2009). arXiv:0903.1631 [hep-ph]

    Article  ADS  Google Scholar 

  43. J. Adam et al. (MEG Collaboration), Phys. Rev. Lett. 107, 171801 (2011). arXiv:1107.5547 [hep-ex]

    Article  ADS  Google Scholar 

  44. J. Chakrabortty, P. Ghosh, W. Rodejohann. arXiv:1204.1000 [hep-ph]

  45. Y. Abe et al. (DOUBLE-CHOOZ Collaboration), Phys. Rev. Lett. 108, 131801 (2012). arXiv:1112.6353 [hep-ex]

    Article  ADS  Google Scholar 

  46. F.P. An et al. (DAYA-BAY Collaboration), Phys. Rev. Lett. 108, 171803 (2012). arXiv:1203.1669 [hep-ex]

    Article  ADS  Google Scholar 

  47. J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012). arXiv:1204.0626 [hep-ex]

    Article  ADS  Google Scholar 

  48. D.V. Forero, M. Tortola, J.W.F. Valle. arXiv:1205.4018 [hep-ph]

  49. P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002). arXiv:hep-ph/0202074

    Article  ADS  Google Scholar 

  50. S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.2666 [hep-ex]

  51. T. Moroi, Phys. Rev. D 53, 6565 (1996). arXiv:hep-ph/9512396. Erratum—ibid D 56, 4424 (1997)

    Article  ADS  Google Scholar 

  52. S.P. Martin, J.D. Wells, Phys. Rev. D 64, 035003 (2001). arXiv:hep-ph/0103067

    Article  ADS  Google Scholar 

  53. R.S. Hundi, Phys. Rev. D 83, 115019 (2011). arXiv:1101.2810 [hep-ph]

    Article  ADS  Google Scholar 

  54. J.F. Gunion, R. Vega, J. Wudka, Phys. Rev. D 42, 1673 (1990)

    Article  ADS  Google Scholar 

  55. R. Godbole, B. Mukhopadhyaya, M. Nowakowski, Phys. Lett. B 352, 388 (1995). arXiv:hep-ph/9411324

    Article  ADS  Google Scholar 

  56. K.-m. Cheung, R.J.N. Phillips, A. Pilaftsis, Phys. Rev. D 51, 4731 (1995). arXiv:hep-ph/9411333

    Article  ADS  Google Scholar 

  57. M. Muhlleitner, M. Spira, Phys. Rev. D 68, 117701 (2003). arXiv:hep-ph/0305288

    Article  ADS  Google Scholar 

  58. E.J. Chun, P. Sharma, J. High Energy Phys. 1208, 162 (2012). arXiv:1206.6278 [hep-ph]

    Article  ADS  Google Scholar 

  59. A.G. Akeroyd, M. Aoki, Phys. Rev. D 72, 035011 (2005). arXiv:hep-ph/0506176

    Article  ADS  Google Scholar 

  60. T. Han, B. Mukhopadhyaya, Z. Si, K. Wang, Phys. Rev. D 76, 075013 (2007). arXiv:0706.0441 [hep-ph]

    Article  ADS  Google Scholar 

  61. D.A. Demir, M. Frank, D.K. Ghosh, K. Huitu, S.K. Rai, I. Turan, Phys. Rev. D 79, 095006 (2009). arXiv:0903.3955 [hep-ph]

    Article  ADS  Google Scholar 

  62. A.G. Akeroyd, H. Sugiyama, Phys. Rev. D 84, 035010 (2011). arXiv:1105.2209 [hep-ph]

    Article  ADS  Google Scholar 

  63. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, J. High Energy Phys. 0207, 034 (2002). arXiv:hep-ph/0206021

    Article  MathSciNet  ADS  Google Scholar 

  64. T. Han, H.E. Logan, B. Mukhopadhyaya, R. Srikanth, Phys. Rev. D 72, 053007 (2005). arXiv:hep-ph/0505260

    Article  ADS  Google Scholar 

  65. W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011). arXiv:1106.1334 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is thankful to Dilip Kumar Ghosh for valuable discussions and also for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Srikanth Hundi.

Appendices

Appendix A: Scalar potential

The scalar potential of the SUSY Type II seesaw model at TeV scale will have the following form:

(23)

The first term in Eq. (23) is the F-term contribution where the summation over the fields Y run over the superfields of W of Eq. (1). The second and third terms of Eq. (23) are D-term contributions due to SU(2) L and U(1) Y gauge groups, respectively. The last two terms of Eq. (23) are soft terms of MSSM and of fields involving triplet scalar fields. The form of \(V_{\rm soft}^{\rm MSSM}\) can be found in Refs. [1823]. The \(V_{\rm soft}^{\rm triplet}\) is given in Eq. (5). The triplet representation of SU(2) generators, which are needed in D a of Eq. (23), are

(24)

For computing D-terms, the forms of the scalar fields are as follows: \(H_{u}=(H^{+}_{u},H^{0}_{u})^{\rm T}\), \(H_{d}=(H^{0}_{d},H^{-}_{d})^{\rm T}\), \(\varPhi_{1}=(\phi_{1}^{++},\phi^{+}_{1},\phi^{0}_{1})^{\rm T}\), \(\varPhi_{2}=(\phi_{2}^{0},\phi^{-}_{2},\phi^{--}_{2})^{\rm T}\). We have described the D-terms of doublet and of triplet Higgses, but the D-terms for other scalar fields of the model can be analogously written.

Appendix B: Conventions of neutralino and chargino mass matrices and their diagonalizing matrices

Our conventions regarding neutralino and chargino mass matrices are the same as in [23]. In the basis \(\varPsi^{0}=(\tilde{B},\tilde{W}^{3},\tilde{H}_{d},\tilde{H}_{u})^{\rm T}\), the mixing mass matrix of neutralinos can be written as \(\mathcal{L}_{N}= -\frac{1}{2} (\varPsi^{0} )^{\rm T}M_{N}\varPsi^{0}+ \mathrm{h.c.}\) The form of M N is same as Eq. (8.2.2) of Ref. [23]. The physical neutralino states are defined from \(\varPsi^{0}_{j}=\sum_{k=1}^{4}V^{N}_{jk}N_{k}\), where the unitary matrix V N diagonalizes M N as

$$ \bigl(V^N \bigr)^{\rm T}M_NV^N={ \rm diag}(m_{N1},m_{N2},m_{N3},m_{N4}). $$
(25)

In the basis \(\varPsi^{-}=(\tilde{W}^{-},\tilde{H}^{-}_{d})^{\rm T}\), \(\varPsi^{+}=(\tilde{W}^{+},\tilde{H}^{+}_{u})^{\rm T}\), the mixing mass terms for charginos can be written as \(\mathcal{L}_{c}=- (\varPsi^{-} )^{\rm T} M_{C}\varPsi^{+}+{\rm h.c.}\) The matrix M C is same as Eq. (8.2.14) of Ref. [23]. The physical chargino states are defined from: \(\varPsi^{-}_{j} =\sum_{k=1}^{2} U^{\chi}_{jk}~\chi^{-}_{k}\), \(\varPsi^{+}_{j}=\sum_{k=1}^{2}V^{\chi}_{jk}~\chi^{+}_{k}\). The unitary matrices U χ and V χ diagonalize M C as

$$ \bigl(U^\chi \bigr)^{\rm T}M_CV^\chi ={ \rm diag}(m_{C1},m_{C2}). $$
(26)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hundi, R.S. Some implications of lepton flavor violating processes in a supersymmetric Type II seesaw model at TeV scale. Eur. Phys. J. C 73, 2396 (2013). https://doi.org/10.1140/epjc/s10052-013-2396-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2396-8

Keywords

Navigation