Skip to main content
Log in

The gravity/CFT correspondence

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

General Relativity can be formulated in terms of a spatially Weyl invariant gauge theory called Shape Dynamics. Using this formulation, we establish a “bulk/bulk” duality between gravity and a Weyl invariant theory on spacelike Cauchy hypersurfaces. This duality has two immediate consequences: (i) it leads trivially to a corresponding “bulk/boundary” duality between General Relativity and a boundary CFT, and (ii) the boundary can be defined in a gauge-invariant way. Moreover, the corresponding bulk/boundary duality is sufficient to explain a large portion of the evidence in favor of gauge/gravity duality and provides independent evidence for the AdS/CFT correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. By “local” we mean involving only a finite number of derivatives.

  2. These conditions are compatible with asymptotic (in time) dS space, which has maximally symmetric CMC slices.

  3. In even dimensions, there would be a (finite) V-independent piece that resembles a conformal anomaly.

References

  1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150

    MathSciNet  ADS  MATH  Google Scholar 

  3. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000). arXiv:hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

  4. G.T. Horowitz, J. Polchinski, Gauge/gravity duality. arXiv:gr-qc/0602037 [gr-qc]

  5. S.R. Wadia, Gauge/Gravity duality and some applications. Mod. Phys. Lett. A 25, 2859–2872 (2010). arXiv:1009.0212 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. J. Polchinski, Introduction to Gauge/Gravity Duality. arXiv:1010.6134 [hep-th]

  7. J. de Boer, E.P. Verlinde, H.L. Verlinde, On the holographic renormalization group. J. High Energy Phys. 08, 003 (2000)

    Article  Google Scholar 

  8. I. Papadimitriou, K. Skenderis, AdS/CFT correspondence and geometry. arXiv:hep-th/0404176

  9. S. de Haro, S.N. Solodukhin, K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001). arXiv:hep-th/0002230

    Article  ADS  MATH  Google Scholar 

  10. M. Henningson, K. Skenderis, The holographic Weyl anomaly. JHEP 07, 023 (1998). arXiv:hep-th/9806087

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Budd, T. Koslowski, T. Koslowski, Shape dynamics in 2+1 dimensions. Gen. Rel. Grav. 44, 1615–1636 (2012). arXiv:1107.1287 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R.L. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity, in Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962), pp. 227–265. arXiv:gr-qc/0405109

    Google Scholar 

  13. H. Gomes, T. Koslowski, The link between general relativity and shape dynamics. Class. Quant. Grav. 29, 075009 (2012). arXiv:1101.5974 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Gomes, S. Gryb, T. Koslowski, Einstein gravity as a 3D conformally invariant theory. Class. Quant. Grav. 28, 045005 (2011). arXiv:1010.2481

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Gryb, Shape dynamics and Mach’s principles: Gravity from conformal geometrodynamics. PhD thesis. arXiv:1204.0683 [gr-qc]

  16. H. de A. Gomes, The dynamics of shape. PhD thesis. arXiv:1108.4837 [gr-qc]

  17. H. Gomes, T. Koslowski, Coupling shape dynamics to matter gives spacetime. Gen. Relativ. Gravit. 44, 1539–1553 (2012). arXiv:1110.3837 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. H. Gomes, The coupling of shape dynamics to matter. J. Phys. Conf. Ser. 360, 012058 (2012). arXiv:1112.0374 [gr-qc]

    Article  ADS  Google Scholar 

  19. H. Gomes, Breaking the uniqueness of the Shape Dynamics Hamiltonian. arXiv:1201.3969 [gr-qc]

  20. J.A. Isenberg, N.O. Murchadha, J.J.W. York, Initial value problem of general relativity. 3. Coupled fields and the scalar-tensor theory. Phys. Rev. D 13, 1532–1537 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  21. J.A. Isenberg, J.M. Nester, Extension of the York field decomposition to general gravitationally coupled fields. Annals Phys. 108, 368–386 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  22. J.W. York, Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett. 26, 1656–1658 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Barbour, The End of Time: the Next Revolution in Physics (Oxford University Press, London, 1999)

    Google Scholar 

  24. L. Freidel, Reconstructing AdS/CFT. arXiv:0804.0632

Download references

Acknowledgements

We would like to thank Julian Barbour for his unique vision and perseverance towards finding a scale–free description of gravity, Lee Smolin for encouraging us to explore the link between shape dynamics and the gravity/CFT correspondence, and Laurent Freidel for useful discussions. Research at the Perimeter Institute is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MEDT. This work was funded, in part, by a grant from the Foundational Questions Institute (FQXi) Fund, a donor advised fund of the Silicon Valley Community Foundation on the basis of proposal FQXi-RFP2-08-05 to the Foundational Questions Institute. HG was supported in part by the U.S. Department of Energy under grant DE-FG02-91ER40674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Gryb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, H., Gryb, S., Koslowski, T. et al. The gravity/CFT correspondence. Eur. Phys. J. C 73, 2275 (2013). https://doi.org/10.1140/epjc/s10052-013-2275-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2275-3

Keywords

Navigation