Skip to main content
Log in

The GW plus cumulant method and plasmonic polarons: application to the homogeneous electron gas*

  • Colloquium
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the spectral function of the homogeneous electron gas using many-body perturbation theory and the cumulant expansion. We compute the angle-resolved spectral function based on the GW approximation and the “GW plus cumulant” approach. In agreement with previous studies, the GW spectral function exhibits a spurious plasmaron peak at energies 1.5ω pl below the quasiparticle peak, ω pl being the plasma energy. The GW plus cumulant approach, on the other hand, reduces significantly the intensity of the plasmon-induced spectral features and renormalizes their energy relative to the quasiparticle energy to ω pl. Consistently with previous work on semiconductors, our results show that the HEG is characterized by the emergence of plasmonic polaron bands, that is, broadened replica of the quasiparticle bands, red-shifted by the plasmon energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Nozieres, D. Pines, Theory of Quantum Liquids, Advanced Books Classics Series (Westview Press, 1999)

  2. E. Gross, E. Runge, O. Heinonen, Many-Particle Theory (Taylor & Francis, 1991)

  3. D. Pines, Rev. Mod. Phys. 28, 184 (1956)

    Article  ADS  Google Scholar 

  4. A.W. Blackstock, R.H. Ritchie, R.D. Birkhoff, Phys. Rev. 100, 1078 (1955)

    Article  ADS  Google Scholar 

  5. D. Pines, D. Bohm, Phys. Rev. 85, 338 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  6. B. Lundqvist, Physik der kondensierten Materie 6, 193 (1967)

    ADS  Google Scholar 

  7. L. Hedin, S. Lundqvist, in Solid State Physics (Academic Press, 1970), Vol. 23, pp. 1−181

  8. D.C. Langreth, Phys. Rev. B 1, 471 (1970)

    Article  ADS  Google Scholar 

  9. L. Hedin, Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  10. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

    Article  ADS  Google Scholar 

  11. B.I. Lundqvist, Physik der kondensierten Materie 6, 206 (1967)

    ADS  Google Scholar 

  12. B.I. Lundqvist, Physik der kondensierten Materie 7, 117 (1968)

    ADS  Google Scholar 

  13. A.S. Kheifets, V.A. Sashin, M. Vos, E. Weigold, F. Aryasetiawan, Phys. Rev. B 68, 233205 (2003)

    Article  ADS  Google Scholar 

  14. M. Guzzo, G. Lani, F. Sottile, P. Romaniello, M. Gatti, J.J. Kas, J.J. Rehr, M.G. Silly, F. Sirotti, L. Reining, Phys. Rev. Lett. 107, 166401 (2011)

    Article  ADS  Google Scholar 

  15. G. Mahan, Many-Particle Physics (Springer, 2000)

  16. L. Hedin, Phys. Scr. 21, 477 (1980)

    Article  ADS  Google Scholar 

  17. F. Aryasetiawan, L. Hedin, K. Karlsson, Phys. Rev. Lett. 77, 2268 (1996)

    Article  ADS  Google Scholar 

  18. L. Hedin, J. Phys.: Condens. Matter 11, R489 (1999)

    ADS  Google Scholar 

  19. M. Guzzo, J.J. Kas, L. Sponza, C. Giorgetti, F. Sottile, D. Pierucci, M.G. Silly, F. Sirotti, J.J. Rehr, L. Reining, Phys. Rev. B 89, 085425 (2014)

    Article  ADS  Google Scholar 

  20. J.S. Zhou, J.J. Kas, L. Sponza, I. Reshetnyak, M. Guzzo, C. Giorgetti, M. Gatti, F. Sottile, J.J. Rehr, L. Reining, J. Chem. Phys. 143, 184109 (2015)

    Article  ADS  Google Scholar 

  21. M. Guzzo, J. Kas, F. Sottile, M. Silly, F. Sirotti, J. Rehr, L. Reining, Eur. Phys. J. B 85, 324 (2012)

    Article  ADS  Google Scholar 

  22. J. Lischner, D. Vigil-Fowler, S.G. Louie, Phys. Rev. Lett. 110, 146801 (2013)

    Article  ADS  Google Scholar 

  23. F. Caruso, H. Lambert, F. Giustino, Phys. Rev. Lett. 114, 146404 (2015)

    Article  ADS  Google Scholar 

  24. F. Caruso, F. Giustino, Phys. Rev. B 92, 045123 (2015)

    Article  ADS  Google Scholar 

  25. J.J. Kas, J.J. Rehr, L. Reining, Phys. Rev. B 90, 085112 (2014)

    Article  ADS  Google Scholar 

  26. J. Lischner, D. Vigil-Fowler, S.G. Louie, Phys. Rev. B 89, 125430 (2014)

    Article  ADS  Google Scholar 

  27. B. Holm, F. Aryasetiawan, Phys. Rev. B 62, 4858 (2000)

    Article  ADS  Google Scholar 

  28. B. Gumhalter, Phys. Rev. B 72, 165406 (2005)

    Article  ADS  Google Scholar 

  29. B. Gumhalter, Prog. Surf. Sci. 87, 163 (2012)

    Article  ADS  Google Scholar 

  30. V.M. Silkin, P. Lazić, N. Došlić, H. Petek, B. Gumhalter, Phys. Rev. B 92, 155405 (2015)

    Article  ADS  Google Scholar 

  31. J. Lischner, G.K. Pálsson, D. Vigil-Fowler, S. Nemsak, J. Avila, M.C. Asensio, C.S. Fadley, S.G. Louie, Phys. Rev. B 91, 205113 (2015)

    Article  ADS  Google Scholar 

  32. P. Nozières, D. Pines, Phys. Rev. 113, 1254 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  33. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover Publications, 2003)

  34. D. Pines, Elementary Excitations in Solids: Lectures on Protons, Electrons, and Plasmons, Advanced book classics (Perseus Books, 1999)

  35. A. Stan, N.E. Dahlen, R. van Leeuwen, Europhys. Lett. 76, 298 (2006)

    Article  ADS  Google Scholar 

  36. A. Stan, N.E. Dahlen, R. van Leeuwen, J. Chem. Phys. 130, 114105 (2009)

    Article  ADS  Google Scholar 

  37. C. Rostgaard, K.W. Jacobsen, K.S. Thygesen, Phys. Rev. B 81, 085103 (2010)

    Article  ADS  Google Scholar 

  38. N. Marom, F. Caruso, X. Ren, O.T. Hofmann, T. Körzdörfer, J.R. Chelikowsky, A. Rubio, M. Scheffler, P. Rinke, Phys. Rev. B 86, 245127 (2012)

    Article  ADS  Google Scholar 

  39. F. Caruso, P. Rinke, X. Ren, A. Rubio, M. Scheffler, Phys. Rev. B 88, 075105 (2013)

    Article  ADS  Google Scholar 

  40. P. Koval, D. Foerster, D. Sánchez-Portal, Phys. Rev. B 89, 155417 (2014)

    Article  ADS  Google Scholar 

  41. N.E. Dahlen, R. van Leeuwen, J. Chem. Phys. 122, 164102 (2005)

    Article  ADS  Google Scholar 

  42. N.E. Dahlen, R. van Leeuwen, U. von Barth, Phys. Rev. A 73, 012511 (2006)

    Article  ADS  Google Scholar 

  43. F. Caruso, P. Rinke, X. Ren, M. Scheffler, A. Rubio, Phys. Rev. B 86, 081102 (2012)

    Article  ADS  Google Scholar 

  44. F. Caruso, D.R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. Rubio, M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)

    Article  ADS  Google Scholar 

  45. M. Hellgren, F. Caruso, D.R. Rohr, X. Ren, A. Rubio, M. Scheffler, P. Rinke, Phys. Rev. B 91, 165110 (2015)

    Article  ADS  Google Scholar 

  46. B. Holm, U. von Barth, Phys. Rev. B 57, 2108 (1998)

    Article  ADS  Google Scholar 

  47. B. Holm, Phys. Rev. Lett. 83, 788 (1999)

    Article  ADS  Google Scholar 

  48. R. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, 2004)

  49. A. Richards, University of Oxford Advanced Research Computing Facility, 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Caruso.

Additional information

Contribution to the Topical Issue “Ψk Volker Heine Young Investigator Award – 2015 Finalists”, edited by Angel Rubio and Risto Nieminen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, F., Giustino, F. The GW plus cumulant method and plasmonic polarons: application to the homogeneous electron gas*. Eur. Phys. J. B 89, 238 (2016). https://doi.org/10.1140/epjb/e2016-70028-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70028-4

Navigation