Skip to main content
Log in

Exploring NK fitness landscapes using imitative learning

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The idea that a group of cooperating agents can solve problems more efficiently than when those agents work independently is hardly controversial, despite our obliviousness of the conditions that make cooperation a successful problem solving strategy. Here we investigate the performance of a group of agents in locating the global maxima of NK fitness landscapes with varying degrees of ruggedness. Cooperation is taken into account through imitative learning and the broadcasting of messages informing on the fitness of each agent. We find a trade-off between the group size and the frequency of imitation: for rugged landscapes, too much imitation or too large a group yield a performance poorer than that of independent agents. By decreasing the diversity of the group, imitative learning may lead to duplication of work and hence to a decrease of its effective size. However, when the parameters are set to optimal values the cooperative group substantially outperforms the independent agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wilson, Sociobiology (Harvard University Press, Cambridge, 1975)

  2. A. Whiten, D. Erdal, Phil. Trans. R. Soc. B 367, 2119 (2012)

    Article  Google Scholar 

  3. H. Bloom, Global Brain: The Evolution of Mass Mind from the Big Bang to the 21st Century (Wiley, New York, 2001)

  4. C.L. Nehaniv, K. Dautenhah, in Imitation and Social Learning in Robots, Humans and Animals (Cambridge University Press, Cambridge, 2007), pp. 1–18

  5. J. Kennedy, Adapt. Behav. 7, 269 (1999)

    Article  Google Scholar 

  6. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, Oxford, 1999)

  7. J. Kennedy, J. Conflict Res. 42, 56 (1998)

    Article  Google Scholar 

  8. J.F. Fontanari, Phys. Rev. E 82, 056118 (2010)

    Article  ADS  Google Scholar 

  9. L. Hong, S.E. Page, J. Econ. Theory 97, 123 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. S.E. Page, The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton University Press, Princeton, 2007)

  11. B.A. Huberman, Physica D 42, 38 (1990)

    Article  ADS  Google Scholar 

  12. S.H. Clearwater, B.A. Huberman, T. Hogg, Science 254, 1181 (1991)

    Article  ADS  Google Scholar 

  13. J.F. Fontanari, PLoS One 9, e110517 (2014)

    Article  ADS  Google Scholar 

  14. R. Axelrod, The Evolution of Cooperation (Basic Books, New York, 1984)

  15. S. Kauffman, S. Levin, J. Theor. Biol. 128, 11 (1987)

    Article  MathSciNet  Google Scholar 

  16. S. Kauffman, E. Weinberger, J. Theor. Biol. 141, 211 (1989)

    Article  Google Scholar 

  17. D. Solow, A. Burnetas, M. Tsai, N.S. Greenspan, Complex Systems 12, 423 (2000)

    MathSciNet  MATH  Google Scholar 

  18. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979)

  19. B. Derrida, Phys. Rev. B 24, 2613 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  20. D.B. Saakian, J.F. Fontanari, Phys. Rev. E 80, 041903 (2009)

    Article  ADS  Google Scholar 

  21. Y. Shibanai, S. Yasuno, I. Ishiguro, J. Conflict Res. 45, 80 (2001)

    Article  Google Scholar 

  22. J.C. González-Avella, M.G. Cosenza, M. Eguíluz, M. San Miguel, New J. Phys. 12, 013010 (2010)

    Article  ADS  Google Scholar 

  23. L.R. Peres, J.F. Fontanari, Europhys. Lett. 96, 38004 (2011)

    Article  ADS  Google Scholar 

  24. L.R. Peres, J.F. Fontanari, Phys. Rev. E 86, 031131 (2012)

    Article  ADS  Google Scholar 

  25. R. Axelrod, J. Conflict Res. 41, 203 (1997)

    Article  Google Scholar 

  26. M. Perc, A. Szolnoki, BioSystems 99, 109 (2010)

    Article  Google Scholar 

  27. Z. Wang, L. Wang, M. Perc, Phys. Rev. E 89, 052813 (2014)

    Article  ADS  Google Scholar 

  28. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, in Numerical Recipes in Fortran: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992), pp. 480–486

  29. W. Feller, in An Introduction to Probability Theory and Its Applications, 3rd edn. (Wiley, New York, 1968), Vol. 1, p. 220

  30. R.I.M. Dunbar, J. Human Evol. 22, 469 (1992)

    Article  Google Scholar 

  31. T. Wey, D.T. Blumstein, W. Shen, F. Jordán, Anim. Behav. 75, 333 (2008)

    Article  Google Scholar 

  32. S. Watts, The People’s Tycoon: Henry Ford and the American Century (Vintage, New York, 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Fontanari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontanari, J.F. Exploring NK fitness landscapes using imitative learning. Eur. Phys. J. B 88, 251 (2015). https://doi.org/10.1140/epjb/e2015-60608-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60608-1

Keywords

Navigation