Skip to main content
Log in

Exactly solvable model of topological insulator realized on spin-\(\tfrac{1}{2}\) lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we propose an exactly solvable model of a topological insulator defined on a spin-\(\tfrac{1}{2}\) square decorated lattice. Itinerant fermions defined in the framework of the Haldane model interact via the Kitaev interaction with spin-\(\tfrac{1}{2}\) Kitaev sublattice. The presented model, whose ground state is a non-trivial topological phase, is solved exactly. We have found out that various phase transitions without gap closing at the topological phase transition point outline the separate states with different topological numbers. We provide a detailed analysis of the model’s ground-state phase diagram and demonstrate how quantum phase transitions between topological states arise. We have found that the states with both the same and different topological numbers are all separated by the quantum phase transition without gap closing. The transition between topological phases is accompanied by a rearrangement of the spin subsystem’s spectrum from band to flat-band states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zahid Hasan, S.-Y. Xu, M. Neupane, arXiv:1406.1040v1 [cond-mat.mes-hall] (2014)

  2. D.J. Kim, S. Thomas, T. Grant, J. Botimer, Z. Fisk, J. Xia, Sci. Rep. 3, 3150 (2013)

    ADS  Google Scholar 

  3. S. Wolgast, C. Kurdak, K. Sun, J.W. Allen, D.J. Kim, Z. Fisk, Phys. Rev. B 88, 180405(R) (2013)

    Article  ADS  Google Scholar 

  4. X. Zhang, N.P. Butch, P. Syers, S. Ziemak, R.L. Greene, J.P. Paglione, Phys. Rev. X 3, 011011 (2013)

    Google Scholar 

  5. M. Ciomaga Hatnean, M.R. Lees, D.Mc K. Paul, G. Balakrishnan, Sci. Rep. 3, 3071 (2013)

    Google Scholar 

  6. G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tinsman, A. Berkley, S. Wolgast, Y.S. Eo, D.-J. Kim, C. Kurdak, J.W. Allen, K. Sun, X.H. Chen, Y.Y. Wang, Z. Fisk, L. Li, arXiv:1306.5221 [cond-mat.str-el] (2013)

  7. V. Alexandrov, M. Dzero, P. Coleman, Phys. Rev. Lett. 111, 226406 (2013)

    Article  ADS  Google Scholar 

  8. M. Dzero, K. Sun, V. Galitski, P. Coleman, Phys. Rev. Lett. 104, 106408 (2010)

    Article  ADS  Google Scholar 

  9. F. Lu, J. Zhao, H. Weng, Z. Fang, X. Dai, Phys. Rev. Lett. 110, 096401 (2013)

    Article  ADS  Google Scholar 

  10. F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  11. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  12. B.A. Bernevig, T.L. Huges, S.-C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  13. M. Fruchart, D. Carpentier, Comptes Rendus Physique 14, 779 (2013)

    Article  ADS  Google Scholar 

  14. C.-C. Liu, W. Feng, Y. Yao, Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  15. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  16. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  17. A.Yu. Kitaev, Ann. Phys. 321, 2 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. H. Yao, S.-C. Zhang, S.A. Kivelson, Phys. Rev. Lett. 102, 217202 (2009)

    Article  ADS  Google Scholar 

  19. C. Wu, D. Arovas, H.-H. Hung, Phys. Rev. B 79, 134427 (2009)

    Article  ADS  Google Scholar 

  20. V. Chua, H. Yao, G.A. Fiete, Phys. Rev. B 83, 180412(R) (2011)

    Article  ADS  Google Scholar 

  21. G. Kells, J. Kailasvuori, J.K. Slingerland, J. Vala, New J. Phys. 13, 95014 (2011)

    Article  Google Scholar 

  22. I.N. Karnaukhov, Europhys. Lett. 102, 57007 (2013)

    Article  ADS  Google Scholar 

  23. E.H. Lieb, Phys. Rev. Lett. 73, 2158 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor O. Slieptsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnaukhov, I., Slieptsov, I. Exactly solvable model of topological insulator realized on spin-\(\tfrac{1}{2}\) lattice. Eur. Phys. J. B 87, 230 (2014). https://doi.org/10.1140/epjb/e2014-50353-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50353-4

Keywords

Navigation