Skip to main content

Advertisement

Log in

Ab initio study of I2 and T2 stacking faults in C14 Laves phase MgZn2

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on the synchroshear mechanism, the formation of intrinsic stacking fault I 2 and twin-like stacking fault T 2 in C14 Laves phases has been modeled in detail and the generalised stacking fault energy curve of I 2 and T 2 for C14 Laves phase MgZn2 has been calculated from first-principles. The results demonstrate that the unstable stacking fault energy of I 2 by synchroshear is still very large, and the stable stacking fault energy of I 2 is higher in comparison with pure Mg implying that the formation of I 2 stacking fault in MgZn2 is difficult. Starting with the I 2 configuration, the T 2 stacking fault can be formed by an additional synchroshear. The unstable and stable stacking fault energies of T 2 are only slightly larger than those of I 2, implying that the formation of T 2 may be essentially similar to that of I 2. From the obtained generalised stacking fault energy, the relevant deformation mechanism of MgZn2 is also discussed. Finally, the electronic structure during synchroshear process is further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wei, G. Dunlop, H. Westengen, Metall. Mater. Trans. A 26, 1705 (1995)

    Article  Google Scholar 

  2. P. Liang et al., Thermochim. Acta 314, 87 (1998)

    Article  Google Scholar 

  3. X. Gao, J. Nie, Scr. Mater. 56, 645 (2007)

    Article  Google Scholar 

  4. J. Geng et al., Scr. Mater. 64, 506 (2011)

    Article  Google Scholar 

  5. C. Liu et al., Intermetallics 8, 1119 (2000)

    Article  Google Scholar 

  6. W.J. Kim, S.I. Hong, K.H. Lee, Met. Mater. Int. 16, 171 (2010)

    Article  Google Scholar 

  7. N. Chetty, M. Weinert, Phys. Rev. B 56, 10844 (1997)

    Article  ADS  Google Scholar 

  8. L. Liu et al., Eur. Phys. J. B 85, 1 (2012)

    ADS  Google Scholar 

  9. G. Lu et al., Phys. Rev. B 62, 3099 (2000)

    Article  ADS  Google Scholar 

  10. J. Han et al., Scr. Mater. 64, 693 (2011)

    Article  Google Scholar 

  11. Y. Wang et al., Scr. Mater. 62, 646 (2010)

    Article  Google Scholar 

  12. T.W. Fan et al., Scr. Mater. 64, 942 (2011)

    Article  Google Scholar 

  13. T. Fan et al., Eur. Phys. J. B 82, 143 (2011)

    Article  ADS  Google Scholar 

  14. L. Wen et al., Eur. Phys. J. B 72, 397 (2009)

    Article  ADS  Google Scholar 

  15. V. Vitek, Philos. Mag. 18, 773 (1968)

    Article  ADS  Google Scholar 

  16. E. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52, 2507 (2004)

    Article  ADS  MATH  Google Scholar 

  17. H. Van Swygenhoven, P. Derlet, A.G. Frøseth, Nat. Mater. 3, 399 (2004)

    Article  ADS  Google Scholar 

  18. M.F. Chisholm, S. Kumar, P. Hazzledine, Science 307, 701 (2005)

    Article  ADS  Google Scholar 

  19. M. Heggen, L. Houben, M. Feuerbacher, Nat. Mater. 9, 332 (2010)

    Article  ADS  Google Scholar 

  20. K. Kumar, P. Hazzledine, Intermetallics 12, 763 (2004)

    Article  Google Scholar 

  21. W. Zhang et al., Phys. Rev. Lett. 106, 165505 (2011)

    Article  ADS  Google Scholar 

  22. O. Vedmedenko, F. Rosch, C. Elsasser, Acta Mater. 56, 4984 (2008)

    Article  Google Scholar 

  23. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  24. U. Starke et al., Phys. Rev. Lett. 80, 758 (1998)

    Article  ADS  Google Scholar 

  25. C. Wang, B. Klein, H. Krakauer, Phys. Rev. Lett. 54, 1852 (1985)

    Article  ADS  Google Scholar 

  26. P.E. Blöchl, O. Jepsen, O. Andersen, Phys. Rev. B 49, 16223 (1994)

    Article  ADS  Google Scholar 

  27. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  28. J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992)

    Article  ADS  Google Scholar 

  29. M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Scr. Mater. 66, 219 (2012)

    Article  Google Scholar 

  30. Q. Zhang et al., Intermetallics 29, 21 (2012)

    Article  Google Scholar 

  31. J. Wu et al., Solid State Sci. 13, 120 (2011)

    Article  ADS  Google Scholar 

  32. M.M. Wu et al., J. Alloys Compd. 506, 412 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Yu Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Fan, TW., Tang, BY. et al. Ab initio study of I2 and T2 stacking faults in C14 Laves phase MgZn2 . Eur. Phys. J. B 86, 188 (2013). https://doi.org/10.1140/epjb/e2013-30909-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30909-6

Keywords

Navigation