Skip to main content
Log in

Carrier generation and recombination rate in armchair graphene nanoribbons

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Armchair graphene nanoribbons (A-GNRs), with a tunable energy gap, are an alternative structure for use in optoelectronic devices. The performance of these optoelectronic devices critically depends on the carrier generation and recombination rates, which have been calculated in this paper. Because of the 1D band structure of A-GNRs, carrier scattering, generation and recombination rates in these structures would be completely different from those in 2D graphene sheets. In this paper, using the tight binding model, and by considering the edge deformation and Fermi golden rule, we find the band structure, and the carrier generation and recombination rates for pure A-GNR due to optical and acoustic phonons, as well as Line Edge Roughness (LER) scatterings. The obtained results show that the total generation and recombination rates increase with increasing A-GNR width and eventually saturate for wide ribbons. These rates increase as the carrier concentration is increased (which has been considered homogenous along ribbon width) and temperature. Also, despite the large LER scattering in narrow ribbons, the generation and recombination rates are less for A-GNRs than for graphene sheets. Using this theoretical model, one can find the suitable A-GNR structure for the design of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.V. Emtsev et al., Nature Materials 8, 203 (2009)

    Article  ADS  Google Scholar 

  2. V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji., J. Appl. Phys. 107, 054512 (2010)

    Article  ADS  Google Scholar 

  3. V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, T. Otsuji, J. Infra. Phys. Tech. 54, 302 (2011)

    Article  Google Scholar 

  4. T. Mueller, F. Xia, P. Avouris, Nature Photon. 4, 297 (2010)

    Article  Google Scholar 

  5. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nature Nanotech. 6, 630 (2011)

    Article  ADS  Google Scholar 

  6. D. Reddy, L.F. Register, G.D. Carpenter, S.K. Banerjee, J. Phys. D: Appl. Phys. 44, 313001 (2011)

    Article  ADS  Google Scholar 

  7. Y.M. Lin, J.C. Tsang, M. Freitag, P. Avouris, Nanotech. 18, 295202 (2007)

    Article  Google Scholar 

  8. M.Y. Han, B. Ozilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  9. T. Tanaka et al., Solid State Commun. 123, 33 (2002)

    Article  ADS  Google Scholar 

  10. T. Fang, A. Konar, H. Xing, D. Jena, Phys. Rev. B 78, 205403 (2008)

    Article  ADS  Google Scholar 

  11. F. Rana, P.A. George, J.H. Strait, J. Dawlaty, S. Shivaraman, M.V.S. Chandrashekhar, M.G. Spencer, Phys. Rev. B 79, 115447 (2009)

    Article  ADS  Google Scholar 

  12. H. Zheng, Z.F. Wang, T. Luo, Q.W. Shi, J. Chen, Phys. Rev. B 75, 165414 (2007)

    Article  ADS  Google Scholar 

  13. K. Seeger, Semiconductor Physics: An Introduction, 7th edn. (Springer Verlag, Berlin, 1999), p. 175

  14. G. Pennington, A. Goldsman, A. Akturk, A.E. Wickenden, Appl. Phys. Lett. 90, 062110 (2007)

    Article  ADS  Google Scholar 

  15. F. Rana, Phys. Rev. B 76, 155431 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Asgari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, E., Asgari, A. Carrier generation and recombination rate in armchair graphene nanoribbons. Eur. Phys. J. B 86, 19 (2013). https://doi.org/10.1140/epjb/e2012-30469-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30469-3

Keywords

Navigation