Skip to main content
Log in

Exploring the patterns and evolution of self-organized urban street networks through modeling

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Barthélemy, Phys. Rep. 499, 1 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Runions, A.M. Fuhrer, B. Lane, P. Federl, A.-G. Rolland-Lagan, P. Prusinkiewicz, ACM Trans. Graph. 24, 702 (2005)

    Article  Google Scholar 

  3. J.R. Banavar, J. Damuth, A. Maritan, A. Rinaldo, Nature 421, 713 (2003)

    Article  ADS  Google Scholar 

  4. J.R. Banavar, M.E. Moses, J.H. Brown, J. Damuth, A. Rinaldo, R.M. Sibly, A. Maritan, Proc. Natl. Acad. Sci. USA 107, 15816 (2010)

    Article  ADS  Google Scholar 

  5. I. Rodriguez-Iturbe, A. Rinaldo, Fractual River Basins: Chance and Self-Organization (Cambridge University Press, Cambridge, 1997)

  6. J.R. Banavar, F. Colaiori, A. Flammini, A. Maritan, A. Rinaldo, J. Stat. Phys. 104, 1 (2001)

    Article  MATH  Google Scholar 

  7. A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)

    Article  ADS  Google Scholar 

  8. R. Guimera, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Natl. Acad. Sci. USA 102, 7794 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. G. Bianconi, P. Pin, M. Marsili, Proc. Natl. Acad. Sci. USA 106, 11433 (2009)

    Article  ADS  Google Scholar 

  10. J. Sienkiewicz, J.A. Holyst, Phys. Rev. E 72, 046127 (2005)

    Article  ADS  Google Scholar 

  11. C. von Ferber, T. Holovatch, Y. Holovatch, V. Palchykov, Eur. Phys. J. B 68, 261 (2009)

    Article  ADS  Google Scholar 

  12. E. Ravasz, A.-L. Barabasi, Phys. Rev. E 67, 026112 (2003)

    Article  ADS  Google Scholar 

  13. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2003)

  14. C. Herrmann, M. Barthélemy, P. Provero, Phys. Rev. E 68, 026128 (2003)

    Article  ADS  Google Scholar 

  15. S.S. Manna, P. Sen, Phys. Rev. E 66, 066114 (2002)

    Article  ADS  Google Scholar 

  16. M. Barthélemy, A. Flammini, J. Stat. Mech. L07002 (2006)

  17. Y. Xie, T. Zhou, W. Bai, G. Chen, W. Xiao, B. Wang, Phys. Rev. E 75, 036106 (2007)

    Article  ADS  Google Scholar 

  18. R. Diestel, Graph Theory (Springer-Verlag, Heidelberg, New York, 2005)

  19. S. Gerke, D. Schlatter, A. Steger, A. Taraz, Random Struct. Algorithms 32, 236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Kalapala, V. Sanwalani, A. Clauset, C. Moore, Phys. Rev. E 73, 026130 (2006)

    Article  ADS  Google Scholar 

  21. A.P. Masucci, D. Smith, A. Crooks, M. Batty, Eur. Phys. J. B 71, 259 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. Barthélemy, A. Flammini, Phys. Rev. Lett. 100, 138702 (2008)

    Article  ADS  Google Scholar 

  23. M. Barthélemy, A. Flammini, Netw. Spat. Econ. 9, 401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Courtat, C. Gloaguen, S. Douady, Phys. Rev. E 83, 036106 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  25. B.J.L. Berry, F.E. Horton, Geographic Perspective on Urban Systems (Prentice Hall, Englewood Cliffs NJ, 1970)

  26. J.P. Rodrigue, C. Comtois, B. Slack, The Geography of Transport Systems (Routledge Education, Oxon, 2006)

  27. B. Jiang, S. Zhao, J. Yin, J. Stat. Mech. P07008 (2008)

  28. S. Marshall, Streets Patterns (Spon Press, Taylor & Francis Group, New York, 2005)

  29. B. Jiang, C. Claramunt, Transactions in GIS 6, 295 (2002)

    Article  Google Scholar 

  30. J.E. Miller, D.J. Hunt, J.E. Abraham, P.A. Salvini, Comput. Environ. Urban Syst. 28, 9 (2004)

    Article  Google Scholar 

  31. P. Wagner, M. Wegener, Urban Land Use, DISP 170, 45 (2007)

    Google Scholar 

  32. X. Li, X. Liu, Int. J. Geogr. Inf. Sci. 22, 21 (2008)

    Article  ADS  MATH  Google Scholar 

  33. D.J. Aldous, Spatial Transportation Networks with Transfer Costs: Asymptotic Optimality of Hub and Spoke Models, in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press, Cambridge, 2008), pp. 471–487

  34. M.T. Gastner, M.E.J. Newman, Eur. Phys. J. B 49, 247 (2006)

    Article  ADS  Google Scholar 

  35. M.T. Gastner, M.E.J. Newman, Phys. Rev. E 74, 016117 (2006)

    Article  ADS  Google Scholar 

  36. J. Buhl, J. Gautrais, N. Reeves, R.V. Sole, S. Valverde, P. Kuntz, G. Theraulaz, Eur. Phys. J. B 49, 513 (2006)

    Article  ADS  Google Scholar 

  37. W.L. Garrison, D. Marble, US Army Transp. Command Tech. Rep. 62, 73 (1962)

    Google Scholar 

  38. K.J. Kansky, Structure of Transportation Network: Relationships Between Network Geometry and Regional Characteristics (University of Chicago Press, Chicago, 1963)

  39. A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E 73, 066107 (2006)

    Article  ADS  Google Scholar 

  40. V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)

    Article  ADS  Google Scholar 

  41. S. Lämmer, B. Gehlsen, D. Helbing, Physica A 363, 89 (2006)

    Article  ADS  Google Scholar 

  42. F. Xie, D. Levinson, Comput. Environ. Urban Syst. 33, 211 (2009)

    Article  Google Scholar 

  43. E. Strano, V. Nicosia, V. Latora, S. Porta, M. Barthelemy, Sci. Rep. 2, 296 (2012)

    Article  Google Scholar 

  44. L.C. Freeman, Soc. Netw. 1, 215 (1979)

    Article  Google Scholar 

  45. P. Crucitti, V. Latora, S. Porta, Chaos 16, 015113 (2006)

    Article  ADS  Google Scholar 

  46. S. Porta, P. Crucitti, V. Latora, Physica A 369, 853 (2006)

    Article  ADS  Google Scholar 

  47. H. Salas-Olmedo, working paper 1034, TSU, Oxon. UK (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yikang Rui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rui, Y., Ban, Y., Wang, J. et al. Exploring the patterns and evolution of self-organized urban street networks through modeling. Eur. Phys. J. B 86, 74 (2013). https://doi.org/10.1140/epjb/e2012-30235-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30235-7

Keywords

Navigation