Skip to main content
Log in

Improved thermal relaxation method for the simultaneous measurement of the specific heat and thermal conductivity

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

A novel method for the simultaneous, high-resolution measurement of the specific heat c and the thermal conductivity κ is presented. A new experimental setup has been developed with special emphasis on the elimination of systematic errors arising from radiative heat loss. A self-consistent data evaluation method is implemented which takes the effects of the sample geometry on c and κ properly into account. The measurements were performed over a broad temperature regime from 3 K up to room temperature on three compounds from the family of strongly correlated electron systems. The differences in their thermal properties and their highly sample-dependent sizes and shapes demonstrate the extended scope of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Felten, F. Steglich, G. Weber, H. Rietschel, F. Gompf, B. Renker, J. Beuers, Europhys. Lett. 2, 323 (1986)

    Article  ADS  Google Scholar 

  2. K. Yano, T. Sakakibara, T. Tayama, M. Yokoyama, H. Amitsuka, Y. Homma, P. Miranović, M. Ichioka, Y. Tsutsumi, K. Machida, Phys. Rev. Lett. 100, 017004 (2008)

    Article  ADS  Google Scholar 

  3. K. Izawa, H. Yamaguchi, T. Sasaki, Y. Matsuda, Phys. Rev. Lett. 88, 027002 (2001)

    Article  ADS  Google Scholar 

  4. B. Lussier, B. Ellman, L. Taillefer, Phys. Rev. B 53, 5145 (1995)

    Article  ADS  Google Scholar 

  5. R.S. Kwok, S.E. Brown, Rev. Sci. Instrum. 61, 809 (1989)

    Article  ADS  Google Scholar 

  6. J. Hou, X. Wang, P. Vellelacheruvu, J. Guo, C. Liu, H. Cheng, J. Appl. Phys. 100, 124314 (2006)

    Article  ADS  Google Scholar 

  7. G.R. Stewart, Rev. Sci. Instrum. 54, 1 (1982)

    Article  ADS  Google Scholar 

  8. P.F. Sullivan, G. Seidel, Phys. Rev. 173, 679 (1968)

    Article  ADS  Google Scholar 

  9. J.S. Hwang, K.J. Lin, C. Tien, Rev. Sci. Instrum. 68, 94 (1996)

    Article  ADS  Google Scholar 

  10. L. Lu, W. Yi, D.L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001)

    Article  ADS  Google Scholar 

  11. F. Chen, J. Shulman, Y. Xue, G.S. Nolas, C.W. Chu, Rev. Sci. Instrum. 75, 4578 (2004)

    Article  ADS  Google Scholar 

  12. R. Bachmann, F.J. DiSalvo, T.H. Geballe, R.L. Greene, R.E. Howard, C.N. King, H.C. Kirsch, K.N. Lee, R.E. Schwall, H.U. Thomas, R.B. Zubeck, Rev. Sci. Instrum. 43, 205 (1972)

    Article  ADS  Google Scholar 

  13. I. Kézsmárki, G. Mihály, R. Gaál, N. Barišić, A. Akrap, H. Berger, L. Forró, C.C. Homes, L. Mihály, Phys. Rev. Lett. 96, 186402 (2006)

    Article  ADS  Google Scholar 

  14. Y. Narumi, K. Suga, K. Kindo, T. Yamasaki, M. Shiga, H. Nakamura, J. Phys. Soc. Jpn 76, 013706 (2007)

    Article  ADS  Google Scholar 

  15. F. Lechermann, S. Biermann, A. Georges, Phys. Rev. Lett. 94, 166402 (2005)

    Article  ADS  Google Scholar 

  16. F. Lechermann, S. Biermann, A. Georges, Phys. Rev. B 76, 85101 (2007)

    Article  ADS  Google Scholar 

  17. T. Inami, K. Ohwada, H. Kimura, M. Watanabe, Y. Noda, H. Nakamura, T. Yamasaki, M. Shiga, N. Ikeda, Y. Murakami, Phys. Rev. B 66, 073108 (2002)

    Article  ADS  Google Scholar 

  18. S. Fagot, P. Foury, S. Ravy, J.P. Pouget, G. Popov, M.V. Lobanov, M. Greenblatt, Physica B 359, 1306 (2005)

    Article  ADS  Google Scholar 

  19. H. Nakamura, T. Yamasaki, S. Giri, H. Imai, M. Shiga, K. Kojima, M. Nishi, K. Kakurai, N. Metoki, J. Phys. Soc. Jpn 69, 2763 (2000)

    Article  ADS  Google Scholar 

  20. H. Imai, H. Wada, M. Shiga, J. Phys. Soc. Jpn 65, 3460 (1996)

    Article  ADS  Google Scholar 

  21. R.S. Kwok, S.E. Brown, Phys. Rev. Lett. 63, 895 (1989)

    Article  ADS  Google Scholar 

  22. K. Maki, Phys. Rev. B 46, 7219 (1992)

    Article  ADS  Google Scholar 

  23. A. Smontara, K. Biljakovic’, S.N. Artemenko, Phys. Rev. B 48, 4329 (1993)

    Article  ADS  Google Scholar 

  24. D.E. Moncton, J.D. Axe, F.J. DiSalvo, Phys. Rev. B 16, 801 (1977)

    Article  ADS  Google Scholar 

  25. I. Kézsmárki, R. Gaál, C.C. Homes, B. Sípos, H. Berger, S. Bordács, G. Mihály, L. Forró, Phys. Rev. B 76, 205114 (2007)

    Article  ADS  Google Scholar 

  26. M.D. Nunez-Regueiro, J.M. Lopez-Castillo, C. Ayache, Phys. Rev. Lett. 55, 1931 (1985)

    Article  ADS  Google Scholar 

  27. M. Harper, T.H. Geballe, F.J. DiSalvo, Phys. Rev. B 15, 2943 (1977)

    Article  ADS  Google Scholar 

  28. R.A. Craven, S.F. Meyer, Phys. Rev. B 16, 4583 (1977)

    Article  ADS  Google Scholar 

  29. Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, G. Saito, Phys. Rev. Lett. 91, 107001 (2003)

    Article  ADS  Google Scholar 

  30. H. Kino, H. Fukuyama, J. Phys. Soc. Jpn 64, 2726 (1995)

    Article  ADS  Google Scholar 

  31. M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, N. Yoneyama, N. Kobayashi, S. Fujimoto, T. Shibauchi, Y. Matsuda, Nature Phys. 5, 44 (2009)

    Article  ADS  Google Scholar 

  32. S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, H. Nojiri, Y. Shimizu, K. Miyagawa, K. Kanoda, Nature Phys. 4, 459 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Demkó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demkó, L., Kézsmárki, I., Csontos, M. et al. Improved thermal relaxation method for the simultaneous measurement of the specific heat and thermal conductivity. Eur. Phys. J. B 74, 27–33 (2010). https://doi.org/10.1140/epjb/e2010-00055-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00055-0

Keywords

Navigation