Skip to main content
Log in

Derivation of a fundamental diagram for urban traffic flow

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Despite the importance of urban traffic flows, there are only a few theoretical approaches to determine fundamental relationships between macroscopic traffic variables such as the traffic density, the utilization, the average velocity, and the travel time. In the past, empirical measurements have primarily been described by fit curves. Here, we derive expected fundamental relationships from a model of traffic flows at intersections, which suggest that the recently measured fundamental diagrams for urban flows can be systematically understood. In particular, this allows one to derive the average travel time and the average vehicle speed as a function of the utilization and/or the average number of delayed vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.C. Gazis, Traffic Theory (Kluwer Academic, Boston, 2002)

  • J. Esser, M. Schreckenberg, Int. J. Mod. Phys. B 8, 1025 (1997)

    Google Scholar 

  • P.M. Simon, K. Nagel, Phys. Rev. E 58, 1286 (1998)

    Google Scholar 

  • K. Nagel, Multi-Agent Transportation Simulations, see http://www2.tu-berlin.de/fb10/ISS/FG4/archive/sim-archive/publications/book/

  • M. Hilliges, W. Weidlich, Transpn. Res. B 29, 407 (1995)

    Google Scholar 

  • D. Helbing, J. Siegmeier, S. Lämmer, Networks and Heterogeneous Media 2, (2007)

  • M. Cremer, J. Ludwig, Math. Comput. Simul. 28, 297ff (1986)

  • C.F. Daganzo, Transpn. Res. B 29, 79 (1995)

    Google Scholar 

  • T. Nagatani, Phys. Rev. E 48, 3290 (1993)

    Google Scholar 

  • D. Chowdhury, A. Schadschneider, Phys. Rev. E 59, R1311 (1999)

  • O. Biham, A.A. Middleton, D. Levine, Phys. Rev. A 46, R6124 (1992)

  • J.-F. Zheng, Z.-Y. Gao, X.-M. Zhao, Phys. Stat. Mech. Appl. 385, 700 (2007)

    Google Scholar 

  • N.A. Irwin, M. Dodd, H.G. Von Cube, Highway Research Board Bulletin 347, 258 (1961)

  • R.J. Smock, Highway Research Board Bulletin 347, 60 (1962)

    Google Scholar 

  • W.W. Mosher, Highway Research Record 6, 41 (1963)

    Google Scholar 

  • Bureau of Public Roads, Traffic Assignment Manual (US Dept. of Commerce, Urban Planning Division, Washington, D.C., 1964)

  • T.J. Soltmann, Highway Research Record 114, 122 (1965)

    Google Scholar 

  • K.B. Davidson, in Proceedings of the 3rd ARRB Conference, Part 1 (Australian Road Research Board, Melbourne, 1966), pp. 183–194

  • R.J. Smeed, Traffic Engineering and Control 8, 455 (1966)

    Google Scholar 

  • K.R. Overgaard, Traffic Quarterly, 197 (1967)

  • J.M. Thomson, Traffic Engineering and Control 8, 721 (1967)

    Google Scholar 

  • J.G. Wardrop, Traffic Engineering and Control 9, 528 (1968)

    Google Scholar 

  • Y. Zahavi, Traffic Engineering and Control 14, (1972)

  • R. Akcelik, Australian Road Research 21, 49 (1991)

    Google Scholar 

  • K.M. Lum, H.S.L. Fan, S.H. Lam, P. Olszewski, J. Transpn. Eng. 124, 213 (1998)

    Google Scholar 

  • H.M. Zhang, Transpn. Res. Rec. 1676, 109 (1999)

    Google Scholar 

  • H. Tu, Monitoring Travel Time Reliability on Freeways, Ph.D. thesis, Delft University of Technology, (2008)

  • C.F. Daganzo, Transport. Res. B 41, 49 (2007)

    Google Scholar 

  • N. Geroliminis, C.F. Daganzo, Transpn. Res. B 42, 759 (2008)

    Google Scholar 

  • N. Geroliminis, C.F. Daganzo, Macroscopic modeling of traffic in cities, TRB 86th Annual Meeting, Paper #07-0413, Washington D.C. (2007)

  • C.F. Daganzo, N. Geroliminis, An analytical approximation for the macroscopic fundamental diagram of urban traffic, accepted for publication (2008)

  • J.W. Godfrey, Traffic Engineering and Control 11, 323 (1969)

    Google Scholar 

  • R. Herman, I. Prigogine, Science 204, 148 (1979)

    Google Scholar 

  • R. Herman, S. Ardekani, Transportation Science 18, 101 (1984)

    Google Scholar 

  • M. Eichler, C.F. Daganzo, Transportation Research B 40, 731 (2006)

    Google Scholar 

  • D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Google Scholar 

  • D. Helbing, M. Treiber, A. Kesting, M. Schönhof, Theoretical vs. empirical classification and prediction of congested traffic states, Eur. Phys. J. B, accepted for publication (2009), see e-print http://arxiv.org/abs/0903.0929

  • G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

  • R. Hall, Queueing Methods for Service and Manufacturing (Prentice Hall, Upper Saddle River, NJ, 1991)

  • D. Helbing, J. Phys. A: Math. Gen 36, L593 (2003)

  • D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the control of traffic intersections, submitted (2008), see e-printhttp://arxiv.org/abs/0903.0926

  • D. Helbing, T. Seidel, S. Lämmer, K. Peters, in Econophysics and Sociophysics, edited by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Wiley, Weinheim, 2006), p. 552

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Helbing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbing, D. Derivation of a fundamental diagram for urban traffic flow. Eur. Phys. J. B 70, 229–241 (2009). https://doi.org/10.1140/epjb/e2009-00093-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00093-7

PACS

Navigation