Skip to main content
Log in

Surface plasmon resonance in nanocrystalline silver in a ZnO matrix

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Silver nanoparticles embedded in ZnO matrix were deposited onto fused silica substrates using high pressure (~40 Pa) d.c. sputtering techniques. The particle size in the films was tailored by varying the system pressure and substrate temperature, while the metal volume fraction was controlled by adjusting the relative time of sputtering of the targets. Blue-shift of the surface plasmon resonance peak was observed with the reduction in size and volume fraction of metal particles. A surface plasmon peak in the absorption spectra was found to be absent in the films with particle size and metal concentration below a critical value. A sharp absorption edge in the absorbance spectra within the UV-VIS range indicated semiconducting behavior of the ultrafine silver particles. Films deposited at lower substrate temperature showed a narrow distribution of nanoparticles, nearly spherical in shape. Increase in substrate temperature resulted in a non-uniform size and shape in the films due to the agglomeration of the nanoparticles. These size and shape distributions have a profound effect on the optical absorbance spectra and result in a broad and asymmetric surface plasmon band. A shape distribution introduced in the Maxwell-Garnett or Bruggeman effective medium theory was found to give a reasonable description of the experimentally observed optical absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995)

  2. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, A. Asahara, A.J. Ikushma, T. Tokizaki, A. Nakamura, J. Opt. Soc. Am. B 11, 1236 (1994)

    Google Scholar 

  3. J.H. Shin, G.N. van den Hoven, A. Polman, Appl. Phys. Lett. 66, 2379 (1995)

    Article  Google Scholar 

  4. M. Fujji, M. Yoshida, Y. Kanazawa, S. Hayashi, K. Yamamoto, Appl. Phys. Lett. 71, 1198 (1997)

    Article  Google Scholar 

  5. Z. Liu, H. Wang, H. Liu, X. Wang, Appl. Phys. Lett. 72, 1823 (1998)

    Article  Google Scholar 

  6. R. Antoine, M. Pellarin, B. Palpant, M. Broyer, B. Prevel, P. Galletto, P.F. Brevet, H.H. Girault, J. Appl. Phys. 84, 4532 (1998)

    Article  Google Scholar 

  7. L. Yang, G. Li, L. Zhang, Appl. Phys. Lett. 76, 1537 (2000)

    Article  Google Scholar 

  8. J.R. Jackson, N.J. Halas, J. Phys. Chem. B 105, 2743 (2001)

    Article  Google Scholar 

  9. U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985)

    Article  Google Scholar 

  10. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)

    Article  Google Scholar 

  11. G. Mie, Annl. Phys. 25, 377 (1908)

    MATH  Google Scholar 

  12. R. Jenson Traci, C. Schatz George, P. Van Duyne Richard, J. Phys. Chem. 103, 2394 (1999)

    Google Scholar 

  13. A. Foss Colby Jr, J. Tierney Michael, R. Martin Charles, J. Phys. Chem. 96, 9001 (1992)

    Google Scholar 

  14. W.P. Barber, K.R. Chang, H. Massoudi, Phys. Rev. B. 27, 7251 (1983)

    Article  Google Scholar 

  15. S.K. Mandal, R.K. Roy, A.K. Pal, J. Phys. D. 36, 261 (2003)

    Article  Google Scholar 

  16. J.C. Maxwell-Garnett, Philos. Trans. R. Soc. London A 203, 385 (1904)

    Google Scholar 

  17. G.A.D. Bruggeman, Ann. Phys. Lpz. 24, 636 (1935)

    Google Scholar 

  18. L. Gao, J.Z. Gu, J. Phys. D. 35, 267 (2002)

    Article  MathSciNet  Google Scholar 

  19. Claro Fransisco, Phys. Rev. B 25, 7875 (1982)

    Article  Google Scholar 

  20. L. Genzel, T.P. Martin, Surf. Sci. 34, 33 (1973)

    Article  Google Scholar 

  21. N. Stefanou, A. Modnos, 1991 J. Phys.: Condens, Matter 3, 8149 (1991)

    Google Scholar 

  22. B.N. Persson, A. Liebsch, Phys. Rev. B 28, 4247 (1983)

    Article  Google Scholar 

  23. D. Bedeaux, J. Vleger, Thin Solid Films 102, 265 (1983)

    Article  Google Scholar 

  24. S. Fedrigo, W. Harbich, J. Buttet, Phys. Rev. B 47, 10706 (1993)

    Article  Google Scholar 

  25. K. Arisato, K. Ryogo, J. Phys. Soc. Jpn 21, 1765 (1996)

    Google Scholar 

  26. V.V. Kresin, Phys. Rev. B 51, 1884 (1995)

    Google Scholar 

  27. H.W. Chu, T. Juh, Phys. Rev. B 49, 17279 (1994)

    Article  Google Scholar 

  28. J. Larme, B. Palpant, B. Prevel, M. Pellarn, M. Trielleux, J.L.Vialle, A. Perez, Broyer M. Broyer, Phys. Rev. Lett. 80, 5105 (1998)

    Article  Google Scholar 

  29. W. Cai, H. Hofmeister, M. Dubiel, Eur. Phys. J.D 13, 245 (2001)

    Article  Google Scholar 

  30. H. Hövel, S. Fritz, A. Hlger, U. Kreibig, Phys. Rev.B 48, 18178 (1993)

    Article  Google Scholar 

  31. F. Cocchini, F. Bassani, Surf. Sci.156, 851 (1985)

    Google Scholar 

  32. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  Google Scholar 

  33. R. Gans, Ann. Physik37, 881 (1912)

  34. F. Moresco, M. Rocca, T. Hildebrandt, M. Henzler, Phys. Rev. Lett. 83, 2238 (1999)

    Article  Google Scholar 

  35. W. Cai, Z. Ye, J. Junhui, Zhang Lide, Appl. Phys. Lett. 73, 2709 (1998)

    Article  Google Scholar 

  36. G.W. Arnold, J.A. Borders, J. Appl. Phys. 48, 1488 (1977)

    Article  Google Scholar 

  37. L. Hornyak Gabor, J. Patriss Charles, R. Martin Charles, J. Phys. Chem. B 101, 1548 (1997)

    Article  Google Scholar 

  38. C.A. Foss Jr, G.L. Hornyak, J.A. Stockert, C.R. Martin, J. Phys. Chem. 96, 7479 (1992)

    Google Scholar 

  39. C.A. Foss Jr, G.L. Hornyak, J.A. Stockert, C.R. Martin, J. Phys. Chem. 98, 2963 (1994)

    Google Scholar 

  40. C.G. Granqvist, O. Hunderi, Phys. Rev. B 16, 3513 (1977)

    Article  Google Scholar 

  41. B.L. Mojet, J.T. Miller, D.E. Ramaker, D.C. Koningsberger, J. Catalysis 186, 373 (1999)

    Article  Google Scholar 

  42. C.R. Bamford, Glass Science and Technology, Vol. 2 (Elsevier, Amsterdam, 1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pal.

Additional information

Received: 23 October 2003, Published online: 23 July 2004

PACS:

78.67.-n Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures - 78.67.Bf Nanocrystals and nanoparticles

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, R.K., Bandyopadhyaya, S. & Pal, A.K. Surface plasmon resonance in nanocrystalline silver in a ZnO matrix. Eur. Phys. J. B 39, 491–498 (2004). https://doi.org/10.1140/epjb/e2004-00222-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00222-x

Keywords

Navigation