The European Physical Journal A

, 51:169

Uncertainty quantification and propagation in nuclear density functional theory

  • N. Schunck
  • J. D. McDonnell
  • D. Higdon
  • J. Sarich
  • S. M. Wild
Review

DOI: 10.1140/epja/i2015-15169-9

Cite this article as:
Schunck, N., McDonnell, J.D., Higdon, D. et al. Eur. Phys. J. A (2015) 51: 169. doi:10.1140/epja/i2015-15169-9
Part of the following topical collections:
  1. Perspectives on Nuclear Data for the Next Decade

Abstract.

Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going efforts seek to better root nuclear DFT in the theory of nuclear forces (see Duguet et al., this Topical Issue), energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in finite nuclei. In this paper, we review recent efforts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • N. Schunck
    • 1
  • J. D. McDonnell
    • 1
    • 2
  • D. Higdon
    • 3
  • J. Sarich
    • 4
  • S. M. Wild
    • 4
  1. 1.Nuclear and Chemical Science DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Physics and AstronomyFrancis Marion UniversityFlorenceUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations