Skip to main content
Log in

Topology change and tensor forces for the EoS of dense baryonic matter

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

When skyrmions representing nucleons are put on crystal lattice and compressed to simulate high density, there is a transition above the normal nuclear matter density (n0) from a matter consisting of skyrmions with integer baryon charge to a state of half-skyrmions with half-integer baryon charge. We exploit this observation in an effective field theory framework to access dense baryonic system. We find that the topology change involved in the transition implies changeover from a Fermi liquid structure to a non-Fermi liquid with the chiral condensate in the “melted-off” nucleon. The ∼ 80% of the nucleon mass that remains “unmelted”, invariant under chiral transformation, points to the possible origin of the (bulk of) proton mass that is not encoded in the standard mechanism of spontaneously broken chiral symmetry. The topology change engenders a drastic modification of the nuclear tensor forces, thereby non-trivially affecting the EoS, in particular, the symmetry energy, for compact star matter. It brings in stiffening of the EoS needed to accommodate a neutron star of ∼ 2 solar mass. The strong effect on the EoS in general and in the tensor force structure in particular will also have impact on processes that could be measured at RIB-type accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lee (Editor), From Nuclei to Stars: Festschrift in Honor of Gerald E. Brown (World Scientific, Singapore, 2011).

  2. G.E. Brown, M. Rho, Phys. Lett. B 237, 3 (1990).

    Article  ADS  Google Scholar 

  3. T. Skyrme, Nucl. Phys. 9, 615 (1959).

    Article  MATH  Google Scholar 

  4. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).

    Article  ADS  Google Scholar 

  5. T. Matsui, Nucl. Phys. A 370, 365 (1981).

    Article  ADS  Google Scholar 

  6. G. Gelmini, B. Ritzi, Phys. Lett. B 357, 431 (1995).

    Article  ADS  Google Scholar 

  7. T.-S. Park, D.-P. Min, M. Rho, Nucl. Phys. A 596, 515 (1996).

    Article  ADS  Google Scholar 

  8. R. Shankar, Rev. Mod. Phys. 66, 129 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Polchinski, in Boulder 1992, Proceedings, Recent directions in particle theory, pp. 235-274, and Calif. Univ. Santa Barbara - NSF-ITP-92-132 (92, rec. Nov.) p. 39 (220633) Texas Univ. Austin - UTTG-92-20 (92, rec. Nov.) p. 39.

  10. C. Song, G.E. Brown, D.-P. Min, M. Rho, Phys. Rev. C 56, 2244 (1997).

    Article  ADS  Google Scholar 

  11. C. Song, Phys. Rep. 347, 289 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. T. Niksic, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011).

    Article  ADS  Google Scholar 

  13. H.K. Lee, M. Rho, arXiv:1301.0067 [nucl-th].

  14. G.E. Brown, M. Rho (Editors), The Multifaceted Skyrmion (World Scientific, Singapore, 2011).

  15. A.D. Shapere, F. Wilczek, Z. Xiong, arXiv:1210.3545 [hep-th].

  16. M. Harada, K. Yamawaki, Phys. Rep. 381, 1 (2003).

    Article  ADS  Google Scholar 

  17. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005).

    Article  ADS  MATH  Google Scholar 

  18. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2005).

    Article  ADS  MATH  Google Scholar 

  19. D.K. Hong, M. Rho, H.-U. Yee, P. Yi, Phys. Rev. D 76, 061901 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  20. D.K. Hong, M. Rho, H.-U. Yee, P. Yi, JHEP 09, 063 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  21. K. Hashimoto, T. Sakai, S. Sugimoto, Prog. Theor. Phys. 120, 1093 (2008).

    Article  ADS  MATH  Google Scholar 

  22. Y.-L. Ma, Y. Oh, G.-S. Yang, M. Harada, H.K. Lee, B.-Y. Park, M. Rho, Phys. Rev. D 82, 074025 (2012).

    Article  ADS  Google Scholar 

  23. Y.-L. Ma, G.-S. Yang, Y. Oh, M. Harada, Phys. Rev. D 87, 034023 (2013).

    Article  ADS  Google Scholar 

  24. D.T. Son, M.A. Stephanov, Phys. Rev. D 69, 065020 (2004).

    Article  ADS  Google Scholar 

  25. A.S. Goldhaber, N.S. Manton, Phys. Lett. B 198, 231 (1987).

    Article  ADS  Google Scholar 

  26. N. Manton, P. Sutcliffe, Topological Solitons (Cambridge University Press, 2004).

  27. B.-Y. Park, V. Vento, in The Multifaceted Skyrmion, edited by G.E. Brown, M. Rho (World Scientific, Singapore, 2011).

  28. H. Dong, T.T.S. Kuo, H.K. Lee, R. Machleidt, M. Rho, Phys. Rev. C 87, 054332 (2013).

    Article  ADS  Google Scholar 

  29. R.A. Battye, N.S. Manton, P.M. Sutcliffe, in The Multifaceted Skyrmion, edited by G.E. Brown, M. Rho (World Scientific, Singapore, 2011).

  30. Y.-L. Ma, M. Harada, H.K. Lee, Y. Oh, B.-Y. Park, M. Rho, Phys.Rev. D 88, 014016 (2013).

    Article  ADS  Google Scholar 

  31. W.-G. Paeng, H.K. Lee, M. Rho, C. Sasaki, arXiv:1303.2898 [nucl-th].

  32. G.E. Brown, M. Rho, Phys. Rev. Lett. 66, 2720 (1991).

    Article  ADS  Google Scholar 

  33. H.K. Lee, M. Rho, Int. J. Mod. Phys. E 22, 1330005 (2013).

    Article  ADS  Google Scholar 

  34. G.E. Brown, R. Machleidt, Phys. Rev. C 50, 1731 (1994).

    Article  ADS  Google Scholar 

  35. C. Xu, B.-A. Li, arXiv:1104.2075 [nucl-th].

  36. I. Vidana, A. Polls, C. Providencia, Phys. Rev. C 84, 062801 (2011).

    Article  ADS  Google Scholar 

  37. H.K. Lee, B.-Y. Park, M. Rho, Phys. Rev. C 83, 025206 (2011) C 84.

    Article  ADS  Google Scholar 

  38. R. Ritz et al., Nature 497, 231 (2013).

    Article  ADS  Google Scholar 

  39. C.E. DeTar, T. Kunihiro, Phys. Rev. D 39, 2805 (1989).

    Article  ADS  Google Scholar 

  40. W.-G. Paeng, H.K. Lee, M. Rho, C. Sasaki, Phys. Rev. D 85, 054022 (2012).

    Article  ADS  Google Scholar 

  41. S. Weinberg, Phys. Rev. Lett. 105, 261601 (2010).

    Article  ADS  Google Scholar 

  42. G.E. Brown, M. Rho, Phys. Lett. B 82, 177 (1979).

    Article  ADS  Google Scholar 

  43. G.E. Brown, M. Rho, V. Vento, Phys. Lett. B 84, 383 (1979).

    Article  ADS  Google Scholar 

  44. M. Rho, A.S. Goldhaber, G.E. Brown, Phys. Rev. Lett. 51, 747 (1983).

    Article  ADS  Google Scholar 

  45. D.B. Kaplan, arXiv:1306.5818 [nucl-th].

  46. N. Tsunoda, T. Otsuka, K. Tsukiyama, M. Hjorth-Jensen, Phys. Rev. C 84, 044322 (2011).

    Article  ADS  Google Scholar 

  47. T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannque Rho.

Additional information

Communicated by A. Ramos

We dedicate this paper, prepared for a contribution to the EPJA Topical Issue “Nuclear Symmetry Energy”, to Gerry Brown.

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Ángels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.K., Rho, M. Topology change and tensor forces for the EoS of dense baryonic matter. Eur. Phys. J. A 50, 14 (2014). https://doi.org/10.1140/epja/i2014-14014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14014-1

Keywords

Navigation