Skip to main content
Log in

First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the \( \beta\) -\( \nu\) angular correlation via the measurement of the recoil energy spectrum after \( \beta\) -decay. As a first step the recoil ions from the \( \beta^{-}_{}\) -decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006) doi:10.1103/RevModPhys.78.991

    Article  ADS  Google Scholar 

  2. J.D. Jackson, S.B. Treiman, H.W. Wyld, Nucl. Phys. 4, 206 (1957) doi:10.1016/0029-5582(87)90019-8

    Article  Google Scholar 

  3. A.S. Carnoy, J. Deutsch, T.A. Girard, R. Prieels, Phys. Rev. C 43, 2825 (1991) doi:10.1103/PhysRevC.43.2825

    Article  ADS  Google Scholar 

  4. P.A. Quin, J. Deutsch, T.E. Pickering, J.E. Schewe, P.A. Voytas, Phys. Rev. D 47, 1247 (1993) doi:10.1103/PhysRevD.47.1247

    Article  ADS  Google Scholar 

  5. N. Severijns et al., Phys. Rev. Lett. 70, 4047 (1993)

    Article  ADS  Google Scholar 

  6. M. Skalsey, Phys. Rev. C 49, R620 (1994) doi:10.1103/PhysRevC.49.R620

    Article  ADS  Google Scholar 

  7. M. Allet et al., Phys. Lett. B 383, 139 (1996) doi:10.1016/0370-2693(96)00724-1

    Article  ADS  Google Scholar 

  8. E. Thomas et al., Nucl. Phys. A 694, 559 (2001) doi:10.1016/S0375-9474(01)01083-1

    Article  ADS  Google Scholar 

  9. R. Huber et al., Phys. Rev. Lett. 90, 202301 (2003) doi:10.1103/PhysRevLett.90.202301

    Article  ADS  Google Scholar 

  10. H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008) doi:10.1016/j.ppnp.2007.05.002

    Article  ADS  Google Scholar 

  11. A. Kozela et al., Phys. Rev. Lett. 102, 172301 (2009) doi:10.1103/PhysRevLett.102.172301

    Article  ADS  Google Scholar 

  12. J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009) doi:10.1103/PhysRevC.79.055502

    Article  ADS  Google Scholar 

  13. J.R.A. Pitcairn et al., Phys. Rev. C 79, 015501 (2009) doi:10.1103/PhysRevC.79.015501

    Article  ADS  Google Scholar 

  14. F. Wauters et al., Phys. Rev. C 80, 062501(R) (2009) doi:10.1103/PhysRevC.80.062501

    Article  ADS  Google Scholar 

  15. J.A. Behr, G. Gwinner, J. Phys. G 36, 033101 (2009) doi:10.1088/0954-3899/36/3/033101

    Article  ADS  Google Scholar 

  16. C.H. Johnson, F. Pleasonton, A.H. Snell, Phys. Rev. 132, 1149 (1963) doi:10.1103/PhysRev.132.1149

    Article  ADS  Google Scholar 

  17. N.D. Scielzo et al., Phys. Rev. Lett. 93, 102501 (2004) doi:10.1103/PhysRevLett.93.102501

    Article  ADS  Google Scholar 

  18. A. Gorelov et al., Phys. Rev. Lett. 94, 142501 (2005) doi:10.1103/PhysRevLett.94.142501

    Article  ADS  Google Scholar 

  19. E.G. Adelberger et al., Phys. Rev. Lett. 83, 1299 (1999)

    Article  ADS  Google Scholar 

  20. M. Beck et al., Nucl. Instrum. Methods A 503, 567 (2003) doi:10.1016/S0168-9002(03)00994-X

    Article  ADS  Google Scholar 

  21. D. Rodriguez et al., Nucl. Instrum. Methods A 565, 876 (2006) doi:10.1016/j.nima.2006.05.165

    Article  ADS  Google Scholar 

  22. F. Glück et al., Eur. Phys. J. A 23, 135 (2005) doi:10.1140/epja/i2004-10057-1

    Article  ADS  Google Scholar 

  23. P.A. Vetter, J.R. Abo-Shaeer, S.J. Freedman, R. Maruyama et al., Phys. Rev. C 77, 035502 (2008) doi:10.1103/PhysRevC.77.035502

    Article  ADS  Google Scholar 

  24. X. Fléchard et al., Phys. Rev. Lett. 101, 212504 (2008) doi:10.1103/PhysRevLett.101.212504

    Article  ADS  Google Scholar 

  25. S. Baeßler et al., Eur. Phys. J. A 38, 17 (2008) doi:10.1140/epja/i2008-10660-0

    Article  ADS  Google Scholar 

  26. D. Počanić et al., Nucl. Instrum. Methods A 611, 211 (2009) doi:10.1016/j.nima.2009.07.065

    Article  Google Scholar 

  27. K. Blaum, Phys. Rep. 425, 1 (2006) doi:10.1016/j.physrep.2005.10.011

    Article  ADS  Google Scholar 

  28. A. Picard et al., Nucl. Instrum. Methods B 63, 345 (1992) doi:10.1016/0168-583X(92)95119-C

    Article  ADS  Google Scholar 

  29. V.M. Lobashev, P.E. Spivak, Nucl. Instrum. Methods A 240, 305 (1985) doi:10.1016/0168-9002(85)90640-0

    Article  ADS  Google Scholar 

  30. E. Kugler et al., Nucl. Instrum. Methods B 70, 41 (1992) doi:10.1016/0168-583X(92)95907-9

    Article  ADS  Google Scholar 

  31. F. Ames et al., Nucl. Instrum. Methods A 538, 17 (2005) doi:10.1016/j.nima.2004.08.119

    Article  ADS  Google Scholar 

  32. S. Coeck et al., Nucl. Instrum. Methods A 572, 585 (2007) doi:10.1016/j.nima.2006.11.054

    Article  ADS  Google Scholar 

  33. G. Savard et al., Phys. Lett. A 158, 247 (1991) doi:10.1016/0375-9601(91)91008-2

    Article  ADS  Google Scholar 

  34. S. Coeck et al., Nucl. Instrum. Methods A 574, 370 (2007) doi:10.1016/j.nima.2007.02.079

    Article  ADS  Google Scholar 

  35. The KATRIN Collaboration (J. Angrik), KATRIN Design Report 2004, FZKA Scientific Report 7090, 2005, available online at http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf

  36. M. Beck for The KATRIN Collaboration, J. Phys.: Conf. Ser. 203, 012097 (2010) doi:10.1088/1742-6596/203/1/012097

    Article  ADS  Google Scholar 

  37. E. Liénard et al., Nucl. Instrum. Methods A 551, 375 (2005) doi:10.1016/j.nima.2005.06.069

    Article  ADS  Google Scholar 

  38. S. Coeck et al., Nucl. Instrum. Methods A 557, 516 (2006) doi:10.1016/j.nima.2005.11.061

    Article  ADS  Google Scholar 

  39. V.Yu. Kozlov et al., Int. J. Mass Spectrom. 251, 159 (2006) doi:10.1016/j.ijms.2006.01.050

    Article  Google Scholar 

  40. V.Yu. Kozlov et al., Nucl. Instrum. Methods B 266, 4515 (2008) doi:10.1016/j.nimb.2008.05.150

    Article  ADS  Google Scholar 

  41. E.M. Haynes (Editor), Handbook of Chemistry and Physics, 91st edition (CRC Press, 2010)

  42. T.A. Carlson et al., Phys. Rev. 169, 27 (1968) doi:10.1103/PhysRev.169.27

    Article  ADS  Google Scholar 

  43. M. Tandecki et al., Nucl. Instrum. Methods A 629, 396 (2011) doi:10.1016/j.nima.2010.10.111

    Article  ADS  Google Scholar 

  44. S. van Gorp, to be published in Nucl. Instrum. Methods A, Vol. 638 (2011) doi:10.1016/j.nima.2010.11.032

  45. N.D. Scielzo et al., Phys. Rev. A 68, 022716 (2003) doi:10.1103/PhysRevA.68.022716

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Beck.

Additional information

Communicated by R. Krücken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, M., Coeck, S., Kozlov, V.Y. et al. First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment. Eur. Phys. J. A 47, 45 (2011). https://doi.org/10.1140/epja/i2011-11045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11045-0

Keywords

Navigation