Skip to main content
Log in

Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The natural habitat of many bacterial swimmers is dominated by interfaces and narrow interstitial spacings where they frequently interact with the fluid boundaries in their vicinity. To quantify these interactions, we investigated the swimming behavior of the soil bacterium Pseudomonas putida in a variety of confined environments. Using microfluidic techniques, we fabricated structured microchannels with different configurations of cylindrical obstacles. In these environments, we analyzed the swimming trajectories for different obstacle densities and arrangements. Although the overall swimming pattern remained similar to movement in the bulk fluid, we observed a change in the turning angle distribution that could be attributed to collisions with the cylindrical obstacles. Furthermore, a comparison of the mean run length of the bacteria to the mean free path of a billiard particle in the same geometry indicated that, inside a densely packed environment, the trajectories of the bacterial swimmers are efficiently guided along the open spacings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bray, Cell Movement: From Molecules to Motility, 2nd edn. (Garland, New York, 2001)

  2. J.W. Costerton, P.S. Stewart, E.P. Greenberg, Science 284, 1318 (1999)

    Article  ADS  Google Scholar 

  3. S.M. Butler, A. Camilli, Nat. Rev. Microbiol. 3, 611 (2005)

    Article  Google Scholar 

  4. H.C. Berg, Annu. Rev. Biochem. 72, 19 (2003)

    Article  Google Scholar 

  5. E. Leifson, Atlas of Bacterial Flagellation (Academic Press, Waltham, Massachusetts, 1960)

  6. L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, 2793 (2000)

    Article  Google Scholar 

  7. H.C. Berg, E. coli in Motion (Springer, New York, 2004)

  8. H.C. Berg, D.A. Brown, Nature 239, 500 (1972)

    Article  ADS  Google Scholar 

  9. J.E. Johansen, J. Pinhassi, N. Blackburn, U.L. Zweifel, Å. Hagström, Aquat. Microb. Ecol. 28, 229 (2002)

    Article  Google Scholar 

  10. L. Xie, T. Altindal, S. Chattopadhyay, X.L. Wu, Proc. Natl. Acad. Sci. USA 108, 2246 (2011)

    Article  ADS  Google Scholar 

  11. J.P. Armitage, R.M. Macnab, J. Bacteriol. 169, 514 (1987)

    Google Scholar 

  12. C.S. Harwood, K. Fosnaugh, M. Dispensa, J. Bacteriol. 171, 4063 (1989)

    Google Scholar 

  13. K.J. Duffy, R.M. Ford, J. Bacteriol. 179, 1428 (1997)

    Google Scholar 

  14. M.L. Davis, L.C. Mounteer, A.H. Zhou, J. Biosci. Bioeng. 111, 605 (2011)

    Article  Google Scholar 

  15. M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Biophys. J. 105, 1915 (2013)

    Article  ADS  Google Scholar 

  16. C. Qian, C.C. Wong, S. Swarup, K. Chiam, Appl. Environ. Microbiol. 79, 4734 (2013)

    Article  Google Scholar 

  17. M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Europhys. Lett. 109, 28007 (2015)

    Article  ADS  Google Scholar 

  18. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)

    Article  Google Scholar 

  19. Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998)

    Article  Google Scholar 

  20. J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)

    Article  Google Scholar 

  21. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Espinosa-Urgel, J. Ramos, Appl. Environ. Microbiol. 70, 5190 (2004)

    Article  Google Scholar 

  23. M. Espinosa-Urgel, R. Kolter, J. Ramos, Microbiology 148, 341 (2002)

    Google Scholar 

  24. K.J. Duffy, P.T. Cummings, R.M. Ford, Biophys. J. 68, 800 (1995)

    Article  ADS  Google Scholar 

  25. E. Lauga, W.R. DiLuzio, G.M. Whitesides, H. A. Stone, Biophys. J. 90, 400 (2006)

    Article  ADS  Google Scholar 

  26. M. Ramia, D.L. Tullock, N. Phan-Thien, Biophys. J. 65, 755 (1993)

    Article  ADS  Google Scholar 

  27. B.D. Kay, A.J. VandenBygaart, Soil Tillage Res. 66, 107 (2002)

    Article  Google Scholar 

  28. J.W. Barton, R.M. Ford, Appl. Environ. Microbiol. 61, 3329 (1995)

    Google Scholar 

  29. L.A. Santaló, Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and Its Applications (Addison-Wesley Publishing Company, London, 1976)

  30. N. Chernov, Hard Ball Systems and the Lorentz Gas, Vol. 101 of Encyclopaedia of Mathematical Sciences, Chap. Entropy Values and Entropy Bounds (Springer, Berlin, 2000), p. 122

  31. N.C. Darnton, L. Turner, S. Rojevsky, H.C. Berg, J. Bacteriol. 189, 1756 (2007)

    Article  Google Scholar 

  32. Y. Magariyama, M. Ichiba, K. Nakata, K. Baba, T. Ohtani, S. Kudo, T. Goto, Biophys. J. 88, 3648 (2005)

    Article  Google Scholar 

  33. R.M. Macnab, Proc. Natl. Acad. Sci. USA 74, 221 (1977)

    Article  ADS  Google Scholar 

  34. M. Kim, J.C. Bird, A.J. Van Parys, K.S. Breuer, T.R. Powers, Proc. Natl. Acad. Sci. USA 100, 15481 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Beta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raatz, M., Hintsche, M., Bahrs, M. et al. Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity. Eur. Phys. J. Spec. Top. 224, 1185–1198 (2015). https://doi.org/10.1140/epjst/e2015-02454-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02454-3

Keywords

Navigation