Skip to main content
Log in

Continuum simulations of water flow past fullerene molecules

  • Regular Article
  • A. Representation of Molecular Systems Across Scales
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suddhashil Chattopadhyay, Xiao-Lun Wu, Biophys J. 96, 2023 (2009)

    Article  Google Scholar 

  2. Matej Praprotnik, Luigi Delle Site, KurtKremer, Annu. Rev. Phys. Chem. 59, 545 (2008)

    Article  Google Scholar 

  3. Rafael Delgado-Buscalioni, Kurt Kremer, Matej Praprotnik, J. Chem. Phys. 128, 114110 (2008)

    Article  Google Scholar 

  4. Rafael Delgado-Buscalioni, Kurt Kremer, Matej Praprotnik, J. Chem. Phys. 131, 244107 (2009)

    Article  Google Scholar 

  5. Jens H. Walther, Matej Praprotnik, Evangelos M. Kotsalis, Petros Koumoutsakos, J. Comput. Phys. 231, 2677 (2012)

    Article  ADS  MATH  Google Scholar 

  6. Tai-De Li, Jianping Gao, Robert Szoszkiewicz, Uzi Landmand, Elisa Riedo, Phys. Rev. B 75, 115415 (2007)

    Article  Google Scholar 

  7. John A. Thomas, Alan J.H. McGaughey, Nano Lett. 8, 2788 (2008)

    Article  ADS  Google Scholar 

  8. John A. Thomas, Alan J.H. McGaughey, Phys. Rev. Lett. 102, 184502 (2009)

    Article  ADS  Google Scholar 

  9. Lydric Bocquet, Elisabeth Charlaix, Chem. Soc. Rev. 39, 1073 (2010)

    Article  Google Scholar 

  10. David M. Holland, Duncan A. Lockerby, Matthew K. Borg, William D. Nicholls, Jason M. Reese, Molecular dynamics pre-simulations for nanoscale computational fluid dynamics. Microfluid Nanofluid (2014), doi:

  11. Meisam Pourali, Simone Meloni, Francesco Magaletti, Ali Maghari, Carlo M. Casciola, Giovanni Ciccotti, J. Chem. Phys. 141, 154107 (2014)

    Article  Google Scholar 

  12. Aleksandar Popadić, Jens H. Walther, Petros Koumoutsakos, Matej Praprotnik, New J. Phys. 16, 082001 (2014)

    Article  Google Scholar 

  13. J.S. Hansen, Jeppe C. Dyre, Peter J. Daivis, B.D. Todd, Henrik Bruus, Phys. Rev. E, 84, 036311 (2011)

    Article  ADS  Google Scholar 

  14. Peter A. Thompson , Mark O. Robbins, Phys. Rev. A 41, 6830 (1990)

    Article  ADS  Google Scholar 

  15. V.P. Sokhan, D. Nicholson, N. Quirke, J. Chem. Phys. 115, 3878 (2001)

    Article  ADS  Google Scholar 

  16. Mainak Majumder, Nitin Chopra, Rodney Andrews, Bruce J. Hinds, Nature 438, 44 (2005)

    Article  ADS  Google Scholar 

  17. Sony Joseph, N.R. Aluru, Nano Lett. 8, 452 (2008)

    Article  ADS  Google Scholar 

  18. Umberto Ulmanella, Chih-Ming Ho, Phys. Fluids 20, 101512 (2008)

    Article  ADS  Google Scholar 

  19. K.M. Mohamed, A.A. Mohamad, Microfluid Nanofluid 8, 283 (2010)

    Article  Google Scholar 

  20. Mainak Majumder, Nitin Chopra, Bruce J. Hinds, ACS Nano 5, 3867 (2011)

    Article  Google Scholar 

  21. Lydric Bocquet, Jean-Louis Barrat, Soft Matter 3, 685 (2007)

    Article  Google Scholar 

  22. G.H. Atefi, H. Niazmand, M.R. Meigounpoory, J. Disp. Sci. Tech. 28, 591 (2007)

    Article  Google Scholar 

  23. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Vol. 6, Course of Theoretical Physics, 2nd edition (Butterworth-Heinemann, 1987)

  24. Dietrich Einzel, Peter Panzer, Mario Liu, Phys. Rev. Lett. 64, 2269 (1990)

    Article  Google Scholar 

  25. Kerstin Falk, Felix Sedlmeier, Laurent Joly, Roland R. Netz, Lydric Bocquet, Nano. Lett. 10, 4067 (2010)

    Article  Google Scholar 

  26. Kerstin Falk, Felix Sedlmeier, Laurent Joly, Roland R. Netz, Lydric Bocquet, Langmuir 28, 14261 (2012)

    Article  Google Scholar 

  27. J.S. Hansen, B.D. Todd, Peter J. Daivis, Phys. Rev. E 84, 016313 (2011)

    Article  ADS  Google Scholar 

  28. Sridhar Kumar Kannam, B.D. Todd, J.S. Hansen, Peter J. Daivis, J. Chem. Phys. 135, 144701 (2011)

    Article  ADS  Google Scholar 

  29. Sridhar Kumar Kannam, B.D. Todd, J.S. Hansen, Peter J. Daivis, J. Chem. Phys. 136, 244704 (2012)

    Article  ADS  Google Scholar 

  30. Sridhar Kumar Kannam, B.D. Todd, J.S. Hansen, Peter J. Daivis, J. Chem. Phys. 136, 024705 (2012)

    Article  ADS  Google Scholar 

  31. Sridhar Kumar Kannam, B.D. Todd, J.S. Hansen, Peter J. Daivis, J. Chem. Phys. 138, 094701 (2013)

    Article  ADS  Google Scholar 

  32. CD-adapco STAR-CD version 4.18 Documentation, 2012

  33. B.S. Padmavathi, T. Amaranath, S.D. Nigam, Fluid Dyn. Res. 11, 229 (1993)

    Article  ADS  Google Scholar 

  34. Frank M. White, Viscous Fluid Flow, 2 edition (McGraw-Hill, 1991)

  35. A. Dupuis, E.M. Kotsalis, P. Koumoutsakos, Phys. Rev. E 75, 046704 (2007)

    Article  ADS  Google Scholar 

  36. Thomas Werder, Jens H. Walther, Petros Koumoutsakos, J. Comput. Phys. 205, 373 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. J.H. Walther, T. Werder, R.L. Jaffe, P. Koumoutsakos, Phys. Rev. E 69, 062201 (2004)

    Article  ADS  Google Scholar 

  38. Weikang Chen, Rui Zhang, Joel Koplik. Phys. Rev. E 89, 023005 (2014)

    Article  ADS  Google Scholar 

  39. S. Richardson, J. Fluid Mech. 59, 707 (1973)

    Article  ADS  MATH  Google Scholar 

  40. Vladimir P. Sokhan, David Nicholson, Nicholas Quirke, J. Chem. Phys. 117, 8531 (2002)

    Article  ADS  Google Scholar 

  41. P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, J. Phys. Chem. B 117, 14808 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Praprotnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popadić, A., Praprotnik, M., Koumoutsakos, P. et al. Continuum simulations of water flow past fullerene molecules. Eur. Phys. J. Spec. Top. 224, 2321–2330 (2015). https://doi.org/10.1140/epjst/e2015-02414-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02414-y

Keywords

Navigation