Skip to main content
Log in

Dynamics of charge density wave order in the quasi one dimensional conductor (TaSe4)2I probed by femtosecond optical spectroscopy

  • Regular Article
  • Charge Density Waves
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Carrier and collective mode dynamics in the quasi one-dimensional charge density wave (CDW) system (TaSe4)2I have been investigated by means of time-resolved optical pump-probe spectroscopy. In the low excitation, linear, regime we focus on the temperature dependence of the collective amplitude modes, originating from linear coupling of the electronic modulation to phonons at q CDW. Numerous amplitude modes are observed, ranging from 100 GHz to several THz. The modes’ softening near T c is rather weak, which could be related to strong decoupling of electronic and lattice subsystems. Alternatively, the data could be reconciled also in case the CDW phase transition is of the first-order type where a nearly constant order parameter below T c would prevent softening. In the high excitation regime we investigated the energetics of the photoinduced CDW-normal phase transition. Similarly to the elaborately investigated one-dimensional CDW system K0.3MoO3 we observe two characteristic energy scales, related to melting the electronic modulation alone (100 meV per unit cell) and to the overall (electronic modulation and the periodic lattice distortion) collapse of the CDW (> 400 meV per unit cell). While the latter coincides with the thermal energy needed to heat the sample from 5 K above T c the former is consistent with the mean field estimate for the electronic condensation energy, suggesting that the weak coupling description of the CDW in (TaSe4)2I is appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pashkin, et al., Phys. Rev. Lett. 105, 067001 (2010)

    Article  ADS  Google Scholar 

  2. N. Dean, et al., Phys. Rev. Lett. 106, 016401 (2011)

    Article  ADS  Google Scholar 

  3. M. Beck, et al., Phys. Rev. Lett. 107, 177007 (2011)

    Article  ADS  Google Scholar 

  4. K.W. Kim, et al., Nature Mater. 11, 497 (2012)

    Article  ADS  Google Scholar 

  5. L. Perfetti, et al., Phys. Rev. Lett. 97, 067402 (2006)

    Article  ADS  Google Scholar 

  6. F. Schmitt, et al., Science 321, 1649 (2008)

    Article  ADS  Google Scholar 

  7. R. Cortés, et al., Phys. Rev. Lett. 107, 097002 (2011)

    Article  ADS  Google Scholar 

  8. C.L. Smallwood, et al., Science 336, 1137 (2012)

    Article  ADS  Google Scholar 

  9. T. Rohwer, et al., Nature 471, 490 (2011)

    Article  ADS  Google Scholar 

  10. K. Sokolowski-Tinten, et al., Nature 422, 287 (2003)

    Article  ADS  Google Scholar 

  11. E. Mohr-Vorobeva, et al., Phys. Rev. Lett. 107, 036403 (2011)

    Article  ADS  Google Scholar 

  12. R.J.D. Miller, et al., Acta Cryst. A66, 137 (2010)

    Google Scholar 

  13. M. Chergui, A.H. Zewail, Chem. Phys. Chem. 10, 28 (2009)

    Article  Google Scholar 

  14. M. Eichberger, et al., Nature 468, 799 (2010)

    Article  ADS  Google Scholar 

  15. N. Erasmus, et al., Phys. Rev. Lett. 109, 167402 (2012)

    Article  ADS  Google Scholar 

  16. T-R. T. Han, et al., Phys. Rev. B 86, 075145 (2012)

    Article  ADS  Google Scholar 

  17. S. Wall, et al., Phys. Rev. Lett. 109, 186101 (2012)

    Article  ADS  Google Scholar 

  18. A. Tomeljak, et al., Phys. Rev. Lett. 102, 066404 (2009)

    Article  ADS  Google Scholar 

  19. H. Schäfer, et al., Phys. Rev. Lett. 105, 066402 (2010)

    Article  ADS  Google Scholar 

  20. R. Yusupov, et al., Nature Phys. 6, 681 (2011)

    Article  ADS  Google Scholar 

  21. P. Kusar, et al., Phys. Rev. B 83, 035104 (2011)

    Article  ADS  Google Scholar 

  22. Hanjo Schäfer, Doctoral Thesis (Verlag Dr. Hut, München, 2011) ISBN 978-3-8439-0241-0

  23. J.E. Lorenzo, et al., J. Phys.: Cond. Mat. 10, 5039 (1998)

    Article  ADS  Google Scholar 

  24. P. Monceau, Adv. Phys. 61, 325 (2012)

    Article  ADS  Google Scholar 

  25. S. Aubry, G. Abramovici, J.-L. Raimbault, J. Stat. Phys. 67, 675 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. P. Gressier, L. Guemas, A. Meerschaut, Acta Cryst. Sec. B 38, 2877 (1982)

    Article  Google Scholar 

  27. L. Forro, J.R. Cooper, A. Janossy, M. Maki, Sol. State Comm. 62, 715 (1987)

    Article  ADS  Google Scholar 

  28. C. Bansal, K. Surendranath, Sol. State Comm. 76, 209 (1990)

    Article  ADS  Google Scholar 

  29. P. Gressier, M.H. Whangbo, A. Meerschaut, J. Rouxel, Inorg. Chem. 23, 1221 (1984)

    Article  Google Scholar 

  30. H.P. Geserich, G. Scheiber, M. Dorrler, F. Levy, P. Monceau, Physica B+C 143, 198 (1986)

    Article  ADS  Google Scholar 

  31. Z.Z. Wang, H.P. Geserich, G. Scheiber, M. Dorrler, F. Levy, P. Monceau, Sol. State Comm. 46, 325 (1983)

    Article  ADS  Google Scholar 

  32. D. Berner, G. Scheiber, A. Gaymann, H. Geserich, P. Monceau, F. Levy, J. Phys. IV (France) 3, 255 (1993)

    Article  Google Scholar 

  33. H. Fujishita, M. Sato, S. Hoshino., J. Phys. C: Sol. State Phys. 18, 1105 (1985)

    Article  ADS  Google Scholar 

  34. C. Roucau, R. Ayroles, P. Gressier, A. Meerschaut, J. Phys. C: Sol. State Phys. 17, 2993 (1984)

    Article  ADS  Google Scholar 

  35. S. Sugai, M. Sato, S. Kurihara, Phys. Rev. B 32, 6809 (1985)

    Article  ADS  Google Scholar 

  36. I. Bozovic, et al., Phys. Rev. B 69, 132503 (2004)

    Article  ADS  Google Scholar 

  37. C. Thomsen, et al., Phys. Rev. B 34, 4129 (1986)

    Article  ADS  Google Scholar 

  38. J. Demsar, K. Biljakovic, D. Mihailovic, Phys. Rev. Lett. 83, 800 (1999)

    Article  ADS  Google Scholar 

  39. V. Favre-Nicolin, et al., Phys. Rev. Lett. 87, 015502 (2001)

    Article  ADS  Google Scholar 

  40. S. vav Smaalen, E.J. Lam, J. Ludecke, J. Phys.: Cond. Mat. 13, 9923 (2001)

    Article  ADS  Google Scholar 

  41. M.S. Sherwin, A. Zettl, P.L. Richards, Phys. Rev. B 36, 6708 (1987)

    Article  ADS  Google Scholar 

  42. A. Tomeljak, Doctoral Thesis (Ljubljana, Slovenia, 2009)

  43. R.S. Kwok, S.E. Brown, Phys. Rev. Lett. 63, 895 (1989)

    Article  ADS  Google Scholar 

  44. H. Schaefer, et al., Suplementary material to: Phys. Rev. Lett. 105, 066402 (2010)

    Article  ADS  Google Scholar 

  45. G. Grüner, Density Waves in Solids (Addison-Wesley Publishing Company, 1994)

  46. D. Starešinić, et al., Eur. Phys. J. B 29, 71 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, H., Koerber, M., Tomeljak, A. et al. Dynamics of charge density wave order in the quasi one dimensional conductor (TaSe4)2I probed by femtosecond optical spectroscopy. Eur. Phys. J. Spec. Top. 222, 1005–1016 (2013). https://doi.org/10.1140/epjst/e2013-01902-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01902-4

Keywords

Navigation