Skip to main content
Log in

Ambient space formulations and statistical mechanics of holonomically constrained Langevin systems

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The most classic approach to the dynamics of an n-dimensional mechanical system constrained by d independent holonomic constraints is to pick explicitly a new set of (nd) curvilinear coordinatesparametrizingthe manifold of configurations satisfying the constraints, and to compute the Lagrangian generating the unconstrained dynamics in these (nd) configuration coordinates. Starting from this Lagrangian an unconstrained Hamiltonian H(q,p) on 2(nd) dimensional phase space can then typically be defined in the standard way via a Legendre transform. Furthermore, if the system is in contact with a heat bath, the associated Langevin and Fokker-Planck equations can be introduced. Provided that an appropriate fluctuation-dissipation condition is satisfied, there will be a canonical equilibrium distribution of the Gibbs form exp(−βH) with respect to the flat measure dqdp in these 2(nd) dimensional curvilinear phase space coordinates. The existence of (nd) coordinates satisfying the constraints is often guaranteed locally by an implicit function theorem. Nevertheless in many examples these coordinates cannot be constructed in any tractable form, even locally, so that other approaches are of interest. In ambient space formulations the dynamics are defined in the full original n-dimensional configuration space, and associated 2n-dimensional phase space, with some version of Lagrange multipliers introduced so that the 2(nd) dimensional sub-manifold of phase space implied by the holonomic constraints and their time derivative, is invariant under the dynamics. In this article we review ambient space formulations, and explain that for constrained dynamics there is in fact considerable freedom in how a Hamiltonian form of the dynamics can be constructed. We then discuss and contrast the Langevin and Fokker-Planck equations and their equilibrium distributions for the different forms of ambient space dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Carter, G. Ciccotti, J.T. Hynes, R. Kapral, Chem. Phys. Lett. 156, 472 (1989)

    Article  ADS  Google Scholar 

  2. G. Ciccotti, R. Kapral, E. Vanden-Eijnden, Chem. Phys. Chem. 6, 1809 (2005)

    Article  Google Scholar 

  3. D. Dichmann, J.H. Maddocks, Nonlinear Science 6, 271 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. D. Dichmann, J.H. Maddocks, R. Pego, Arch. Rational Mech. Anal. 135, 357 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. P. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2, 129 (1950)

    MATH  MathSciNet  Google Scholar 

  6. P. Dirac, Generalized Hamiltonian dynamics, Proc. R. Soc. A 246, 326 (1958)

    MATH  ADS  MathSciNet  Google Scholar 

  7. W. E, E. Vanden-Eijnden, in Multiscale, Modelling, and Simulation, edited by S. Attinger, P. Koumoutsakos (Springer, Berlin, 2004), p. 35

  8. L. Evans, R. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press, 1992)

  9. H. Federer, Geometric Measure Theory (Springer, 1969)

  10. O. Gonzalez, J.H. Maddocks, R. Pego, Arch. Rational Mech. Anal. 157, 285 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. C. Hartmann, Ph.D. thesis, Free University Berlin, 2007

  12. C. Hartmann, J. Latorre, G. Ciccotti, Eur. Phys. J. Special Topics 200, 79 (2011)

    Article  ADS  Google Scholar 

  13. C. Hartmann, J. Latorre, C. Schütte, Proc. Comp. Sci. 1, 1591 (2010)

    Google Scholar 

  14. C. Hartmann, C. Schütte, ZAMM 85, 700 (2005)

    Article  MATH  Google Scholar 

  15. C. Hartmann, C. Schütte, G. Ciccotti, J. Chem. Phys. 132, 111103 (2010)

    Article  ADS  Google Scholar 

  16. H. Hotelling, Biometrika 28, 321 (1936)

    MATH  Google Scholar 

  17. C. Ipsen, C. Meyer, Am. Math. Mon. 102, 904 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Kallemov, G. H. Miller, SIAM J. Sci. Comput. 33, 653 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Kupferman, J. Stat. Phys. 114, 291 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. T. Lelièvre, M. Rousset, G. Stoltz., Free Energy Computations: A Mathematical Perspective (Imperial College Press, 2010)

  21. T. Lelièvre, M. Rousset, G. Stoltz, Math. Comp. (to appear) (2011)

  22. J.H. Maddocks, R. Pego, Commun. Math. Phys. 170, 207 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry (Springer, New York, 1999)

  24. J. Mattingly, A. Stuart, Markov Process. Related Fields 8, 199 (2001)

    MathSciNet  Google Scholar 

  25. J. Mattingly, A. Stuart, D. Higham, Stochastic Process. Appl. 101, 185 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Miao, A. Ben-Israel, Linear Algebra Appl. 171, 81 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Milstein, M. Tretyakov, IMA J. Numer. Anal. 23, 593 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Øksendal, Stochastic Differential Equations, 5th edn. (Springer, Berlin, Heidelberg, 1998)

  29. M. Tuckerman, Y. Liu, G. Ciccotti, G. Martyna, J. Chem. Phys. 115, 1678 (2001)

    Article  ADS  Google Scholar 

  30. W.F. van Gunsteren, H.J.C. Berendsen, J.A.C. Rullmann, Molec. Phys. 44, 69 (1981)

    Article  ADS  Google Scholar 

  31. E. Vanden-Eijnden, G. Ciccotti, Chem. Phys. Lett. 429, 310 (2006)

    Article  ADS  Google Scholar 

  32. J. Walter, O. Gonzalez, J.H. Maddocks, Multisc. Model. Simul. 8, 1018 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. P. Wedin, in Matrix Pencils, Vol. 973 of Lecture Notes in Mathematics, edited by B.Kågström, A. Ruhe (Springer, Berlin Heidelberg, 1983), p. 263

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Walter, C. Hartmann or J. H. Maddocks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, J., Hartmann, C. & Maddocks, J.H. Ambient space formulations and statistical mechanics of holonomically constrained Langevin systems. Eur. Phys. J. Spec. Top. 200, 153–181 (2011). https://doi.org/10.1140/epjst/e2011-01523-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01523-y

Keywords

Navigation