Skip to main content
Log in

Stagnation point flow and heat transfer over a stretching/shrinking sheet in a viscoelastic fluid with convective boundary condition and partial slip velocity

The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this study, the mathematical modeling for the stagnation point flow and heat transfer over a stretching/shrinking surface in a viscoelastic fluid (Walter’s liquid-B model) with partial slip velocity is considered. The non-linear partial differential equations are transformed into a system of ordinary differential equations by a similarity transformation before being solved numerically using the Runge-Kutta-Fehlberg method. Numerical solutions are obtained for the surface temperature, temperature gradient at the surface and the skin friction coefficient. The features of the flow and heat transfer characteristics for various values of Prandtl number, the dimensionless viscoelastic parameter, stretching parameter, constant velocity slip parameter and conjugate parameter are analyzed and discussed. It is found that the heat transfer rate is higher for Walter’s fluid compared to the classical viscous fluid and the presence of the velocity slip reduces the effects of the viscoelastic parameter on the skin friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Turkyilmazoglu, Int. J. Therm. Sci. 50, 2264 (2011)

    Article  Google Scholar 

  2. L. Crane, Z. Angew. Math. Phys. 21, 645 (1970)

    Article  Google Scholar 

  3. P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977)

    Article  Google Scholar 

  4. C.K. Chen, M. Char, J. Math. Anal. Appl. 135, 568 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Dandapat, A. Gupta, Int. J. Non-Linear Mech. 24, 215 (1989)

    Article  MATH  Google Scholar 

  6. S. Bhattacharyya, A. Pal, A.S. Gupta, Heat Mass Transfer 34, 41 (1998)

    Article  ADS  Google Scholar 

  7. R. Cortell, Int. J. Non-Linear Mech. 41, 78 (2006)

    Article  MATH  ADS  Google Scholar 

  8. P. Ariel, T. Hayat, S. Asghar, Acta Mech. 187, 29 (2006)

    Article  MATH  Google Scholar 

  9. K. Bhattacharyya, M. Uddin, G. Layek, W.A. Pk, Bangladesh J. Sci. Ind. Res. 46, 451 (2011)

    Google Scholar 

  10. A.V. Luikov, V.A. Aleksashenko, A.A. Aleksashenko, Int. J. Heat Mass Transfer 14, 1047 (1971)

    Article  MATH  Google Scholar 

  11. R.C. Bataller, Appl. Math. Comput. 206, 832 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Aziz, Commun. Nonlinear Sci. Numer. Simulat. 14, 1064 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Ishak, Appl. Math. Comput. 217, 837 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Magyari, Commun. Nonlinear Sci. Numer. Simulat. 16, 599 (2010)

    Article  ADS  Google Scholar 

  15. S. Yao, T. Fang, Y. Zhong, Commun. Nonlinear Sci. Numer. Simulat. 16, 752 (2011)

    Article  MATH  ADS  Google Scholar 

  16. M.K.A. Mohamed, M.Z. Salleh, R. Nazar, A. Ishak, Bound. Value Probl. 2013, 1 (2013)

    Article  MathSciNet  Google Scholar 

  17. P.G. Siddheshwar, U.S. Mahabaleswar, Int. J. Non-Linear Mech. 40, 807 (2005)

    Article  MATH  ADS  Google Scholar 

  18. T. Hayat, Z. Iqbal, M. Mustafa, J. Mech. 28, 209 (2012)

    Article  Google Scholar 

  19. E.R.G. Eckert, VDI Forsch. 461 (1942)

  20. M.Z. Salleh, R. Nazar, I. Pop, Chem. Eng. Commun. 196, 987 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Zuki Salleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M., Salleh, M., Ishak, A. et al. Stagnation point flow and heat transfer over a stretching/shrinking sheet in a viscoelastic fluid with convective boundary condition and partial slip velocity. Eur. Phys. J. Plus 130, 171 (2015). https://doi.org/10.1140/epjp/i2015-15171-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15171-8

Keywords

Navigation