Skip to main content
Log in

Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at \(\sqrt{s} = 7\ \mathrm{TeV}\) and first determination of the strong coupling constant in the TeV range

  • Letter
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A measurement is presented of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section as a function of the average transverse momentum, \(\langle p_{\mathrm{T1,2}}\rangle\), of the two leading jets in the event. The data sample was collected during 2011 at a proton–proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 5.0 fb−1. The strong coupling constant at the scale of the Z boson mass is determined to be α S (M Z)=0.1148±0.0014 (exp.)±0.0018 (PDF)±0.0050(theory), by comparing the ratio in the range \(0.42 < \langle p_{\mathrm{T1,2}}\rangle< 1.39~\mathrm{TeV}\) to the predictions of perturbative QCD at next-to-leading order. This is the first determination of α S (M Z) from measurements at momentum scales beyond 0.6 TeV. The predicted ratio depends only indirectly on the evolution of the parton distribution functions of the proton such that this measurement also serves as a test of the evolution of the strong coupling constant. No deviation from the expected behaviour is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. C.G. Callan Jr., Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541 (1970). doi:10.1103/PhysRevD.2.1541

    Article  ADS  Google Scholar 

  2. K. Symanzik, Small distance behaviour in field theory and power counting. Commun. Math. Phys. 18, 227 (1970). doi:10.1007/BF01649434

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. K. Symanzik, Small-distance-behaviour analysis and Wilson expansions. Commun. Math. Phys. 23, 49 (1971). doi:10.1007/BF01877596

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. Beringer et al. (Particle Data Group), Review of particle physics. Phys. Rev. D 86, 010001 (2012). doi:10.1103/PhysRevD.86.010001

    Article  ADS  Google Scholar 

  5. D0 Collaboration, Measurement of angular correlations of jets at \(\sqrt{s}=1.96~\mathrm{TeV}\) and determination of the strong coupling at high momentum transfers. Phys. Lett. B 718, 56 (2012). doi:10.1016/j.physletb.2012.10.003. arXiv:1207.4957

    Article  ADS  Google Scholar 

  6. CDF Collaboration, Measurement of the strong coupling constant from inclusive jet production at the Tevatron \(\bar{\mathrm{p}}\mathrm{p}\) Collider. Phys. Rev. Lett. 88, 042001 (2002). doi:10.1103/PhysRevLett.88.042001. arXiv:hep-ex/0108034

    Article  Google Scholar 

  7. B. Malaescu, P. Starovoitov, Evaluation of the strong coupling constant α S using the ATLAS inclusive jet cross-section data. Eur. Phys. J. C 72, 2041 (2012). doi:10.1140/epjc/s10052-012-2041-y. arXiv:1203.5416

    Article  ADS  Google Scholar 

  8. V.N. Gribov, L.N. Lipatov, Deep inelastic e-p scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972). [Yad. Fiz. 15, 781 (1972)]

    Google Scholar 

  9. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977). doi:10.1016/0550-3213(77)90384-4

    Article  ADS  Google Scholar 

  10. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+e annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641 (1977). [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]

    ADS  Google Scholar 

  11. CMS Collaboration, Measurement of the ratio of 3-jet to 2-jet cross sections in pp collisions at \(\sqrt{s}=7~\mathrm{TeV}\). Phys. Lett. B 702, 336 (2011). doi:10.1016/j.physletb.2011.07.067. arXiv:1106.0647

    Article  ADS  Google Scholar 

  12. M. Cacciari, G.P. Salam, G. Soyez, The anti-k t jet clustering algorithm. J. High Energy Phys. 04, 063 (2008). doi:10.1088/1126-6708/2008/04/063. arXiv:0802.1189

    Article  ADS  Google Scholar 

  13. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). doi:10.1140/epjc/s10052-012-1896-2. arXiv:1111.6097

    Article  ADS  Google Scholar 

  14. CMS Collaboration, The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004

    Article  Google Scholar 

  15. CMS Collaboration, Tracking and primary vertex results in first 7 TeV collisions. CMS physics analysis summary CMS-PAS-TRK-10-005 (2010)

  16. CMS Collaboration, Particle–flow event reconstruction in CMS and performance for jets, taus, and \(E_{\mathrm{T}}^{\text{miss}}\). CMS physics analysis summary CMS-PAS-PFT-09-001 (2009)

  17. CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. J. Instrum. 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002

    Article  Google Scholar 

  18. T. Sjöstrand, S. Mrenna, P. Skands, Pythia 6.4 physics and manual. J. High Energy Phys. 2006, 026 (2006) doi:10.1088/1126-6708/2006/05/026

    Article  Google Scholar 

  19. GEANT4 Collaboration, Geant4—a simulation tool kit. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  20. G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 362, 487 (1995). doi:10.1016/0168-9002(95)00274-X

    Article  ADS  Google Scholar 

  21. T. Adye, Unfolding algorithms and tests using RooUnfold (2011). arXiv:1105.1160

  22. CMS Collaboration, Jet energy scale performance in 2011. CMS detector performance summary CMS-DP-2012-006 (2012)

  23. CMS Collaboration, Measurements of differential jet cross sections in proton–proton collisions at \(\sqrt{s}=7~\mathrm{TeV}\) with the CMS detector. Phys. Rev. D 87, 112002 (2013). doi:10.1103/PhysRevD.87.112002. arXiv:1212.6660

    Article  ADS  Google Scholar 

  24. M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639 (2008). doi:10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883

    Article  ADS  Google Scholar 

  25. J. Alwall et al., MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 09, 028 (2007). doi:10.1088/1126-6708/2007/09/028. arXiv:0706.2334

    Article  ADS  Google Scholar 

  26. T. Stelzer, W.F. Long, Automatic generation of tree level helicity amplitudes. Comput. Phys. Commun. 81, 357 (1994). doi:10.1016/0010-4655(94)90084-1. arXiv:hep-ph/9401258

    Article  ADS  Google Scholar 

  27. A. Höcker, V. Kartvelishvili, SVD approach to data unfolding. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 372, 469 (1996). doi:10.1016/0168-9002(95)01478-0. arXiv:hep-ph/9509307

    Article  ADS  Google Scholar 

  28. Z. Nagy, Three-jet cross sections in hadron-hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). doi:10.1103/PhysRevLett.88.122003. arXiv:hep-ph/0110315

    Article  ADS  Google Scholar 

  29. Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron–hadron collisions. Phys. Rev. D 68, 094002 (2003). doi:10.1103/PhysRevD.68.094002. arXiv:hep-ph/0307268

    Article  ADS  Google Scholar 

  30. T. Kluge, K. Rabbertz, M. Wobisch, fastNLO: fast pQCD calculations for PDF fits. arXiv:hep-ph/0609285 (2006)

  31. D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project. arXiv:1208.3641 (2012)

  32. R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties. Nucl. Phys. B 838, 136 (2010). doi:10.1016/j.nuclphysb.2010.05.008. arXiv:1002.4407

    Article  ADS  MATH  Google Scholar 

  33. R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). doi:10.1016/j.nuclphysb.2011.03.021. arXiv:1101.1300

    Article  ADS  Google Scholar 

  34. S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at next-to-next-to-leading order. Phys. Rev. D 86, 054009 (2012). doi:10.1103/PhysRevD.86.054009. arXiv:1202.2281

    Article  ADS  Google Scholar 

  35. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). doi:10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002

    Article  ADS  Google Scholar 

  36. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on α S in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C 64, 653 (2009). doi:10.1140/epjc/s10052-009-1164-2. arXiv:0905.3531

    Article  ADS  Google Scholar 

  37. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). doi:10.1103/PhysRevD.82.074024. arXiv:1007.2241

    Article  ADS  Google Scholar 

  38. J. Gao et al., The CT10 NNLO global analysis of QCD. arXiv:1302.6246 (2013)

  39. G. Bozzi, J. Rojo, A. Vicini, Impact of the parton distribution function uncertainties on the measurement of the W boson mass at the Tevatron and the LHC. Phys. Rev. D 83, 113008 (2011). doi:10.1103/PhysRevD.83.113008

    Article  ADS  Google Scholar 

  40. D0 Collaboration, Determination of the strong coupling constant from the inclusive jet cross section in \(\mathrm{p}\bar{\mathrm{p}}\) collisions at \(\sqrt{s} = 1.96~\mathrm{TeV}\). Phys. Rev. D 80, 111107 (2009). doi:10.1103/PhysRevD.80.111107. arXiv:0911.2710

    Article  Google Scholar 

  41. H1 Collaboration, Jet production in ep collisions at high Q 2 and determination of α S . Eur. Phys. J. C 65, 363 (2010). doi:10.1140/epjc/s10052-009-1208-7. arXiv:0904.3870

    Article  ADS  Google Scholar 

  42. H1 Collaboration, Jet production in ep collisions at low Q 2 and determination of α S . Eur. Phys. J. C 67, 1 (2010). doi:10.1140/epjc/s10052-010-1282-x. arXiv:0911.5678

    Article  ADS  Google Scholar 

  43. ZEUS Collaboration, Inclusive-jet photoproduction at HERA and determination of α S . Nucl. Phys. B 864, 1 (2012). doi:10.1016/j.nuclphysb.2012.06.006. arXiv:1205.6153

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Gavin Salam for his valuable comments to this paper. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

The CMS Collaboration., Chatrchyan, S., Khachatryan, V. et al. Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at \(\sqrt{s} = 7\ \mathrm{TeV}\) and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). https://doi.org/10.1140/epjc/s10052-013-2604-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2604-6

Navigation