The European Physical Journal C

, 73:2462

Measurements of the branching fractions of \(B^{+} \to p \bar{p} K^{+}\) decays

Authors

  • R. Aaij
    • Nikhef National Institute for Subatomic Physics
  • C. Abellan Beteta
    • Universitat de Barcelona
  • A. Adametz
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • B. Adeva
    • Universidad de Santiago de Compostela
  • M. Adinolfi
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • C. Adrover
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • A. Affolder
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • Z. Ajaltouni
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • J. Albrecht
    • Fakultät PhysikTechnische Universität Dortmund
  • F. Alessio
    • European Organization for Nuclear Research (CERN)
  • M. Alexander
    • School of Physics and AstronomyUniversity of Glasgow
  • S. Ali
    • Nikhef National Institute for Subatomic Physics
  • G. Alkhazov
    • Petersburg Nuclear Physics Institute (PNPI)
  • P. Alvarez Cartelle
    • Universidad de Santiago de Compostela
  • A. A. AlvesJr
    • Sezione INFN di Roma La Sapienza
    • European Organization for Nuclear Research (CERN)
  • S. Amato
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • Y. Amhis
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • L. Anderlini
    • Sezione INFN di Firenze
  • J. Anderson
    • Physik-InstitutUniversität Zürich
  • R. Andreassen
    • University of Cincinnati
  • R. B. Appleby
    • School of Physics and AstronomyUniversity of Manchester
  • O. Aquines Gutierrez
    • Max-Planck-Institut für Kernphysik (MPIK)
  • F. Archilli
    • Laboratori Nazionali dell’INFN di Frascati
  • A. Artamonov
    • Institute for High Energy Physics (IHEP)
  • M. Artuso
    • Syracuse University
  • E. Aslanides
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • G. Auriemma
    • Sezione INFN di Roma La Sapienza
  • S. Bachmann
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • J. J. Back
    • Department of PhysicsUniversity of Warwick
  • C. Baesso
    • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • V. Balagura
    • Institute of Theoretical and Experimental Physics (ITEP)
  • W. Baldini
    • Sezione INFN di Ferrara
  • R. J. Barlow
    • School of Physics and AstronomyUniversity of Manchester
  • C. Barschel
    • European Organization for Nuclear Research (CERN)
  • S. Barsuk
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • W. Barter
    • Cavendish LaboratoryUniversity of Cambridge
  • Th. Bauer
    • Nikhef National Institute for Subatomic Physics
  • A. Bay
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • J. Beddow
    • School of Physics and AstronomyUniversity of Glasgow
  • I. Bediaga
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • S. Belogurov
    • Institute of Theoretical and Experimental Physics (ITEP)
  • K. Belous
    • Institute for High Energy Physics (IHEP)
  • I. Belyaev
    • Institute of Theoretical and Experimental Physics (ITEP)
  • E. Ben-Haim
    • LPNHEUniversité Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3
  • M. Benayoun
    • LPNHEUniversité Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3
  • G. Bencivenni
    • Laboratori Nazionali dell’INFN di Frascati
  • S. Benson
    • School of Physics and AstronomyUniversity of Edinburgh
  • J. Benton
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • A. Berezhnoy
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
  • R. Bernet
    • Physik-InstitutUniversität Zürich
  • M.-O. Bettler
    • Cavendish LaboratoryUniversity of Cambridge
  • M. van Beuzekom
    • Nikhef National Institute for Subatomic Physics
  • A. Bien
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • S. Bifani
    • School of PhysicsUniversity College Dublin
  • T. Bird
    • School of Physics and AstronomyUniversity of Manchester
  • A. Bizzeti
    • Sezione INFN di Firenze
  • P. M. Bjørnstad
    • School of Physics and AstronomyUniversity of Manchester
  • T. Blake
    • European Organization for Nuclear Research (CERN)
  • F. Blanc
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • C. Blanks
    • Imperial College London
  • J. Blouw
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • S. Blusk
    • Syracuse University
  • A. Bobrov
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • V. Bocci
    • Sezione INFN di Roma La Sapienza
  • A. Bondar
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • N. Bondar
    • Petersburg Nuclear Physics Institute (PNPI)
  • W. Bonivento
    • Sezione INFN di Cagliari
  • S. Borghi
    • School of Physics and AstronomyUniversity of Manchester
  • A. Borgia
    • Syracuse University
  • T. J. V. Bowcock
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • E. Bowen
    • Physik-InstitutUniversität Zürich
  • C. Bozzi
    • Sezione INFN di Ferrara
  • T. Brambach
    • Fakultät PhysikTechnische Universität Dortmund
  • J. van den Brand
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • J. Bressieux
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • D. Brett
    • School of Physics and AstronomyUniversity of Manchester
  • M. Britsch
    • Max-Planck-Institut für Kernphysik (MPIK)
  • T. Britton
    • Syracuse University
  • N. H. Brook
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • H. Brown
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • I. Burducea
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • A. Bursche
    • Physik-InstitutUniversität Zürich
  • J. Buytaert
    • European Organization for Nuclear Research (CERN)
  • S. Cadeddu
    • Sezione INFN di Cagliari
  • O. Callot
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • M. Calvi
    • Sezione INFN di Milano Bicocca
  • M. Calvo Gomez
    • Universitat de Barcelona
  • A. Camboni
    • Universitat de Barcelona
  • P. Campana
    • Laboratori Nazionali dell’INFN di Frascati
    • European Organization for Nuclear Research (CERN)
  • A. Carbone
    • Sezione INFN di Bologna
  • G. Carboni
    • Sezione INFN di Roma Tor Vergata
  • R. Cardinale
    • Sezione INFN di Genova
  • A. Cardini
    • Sezione INFN di Cagliari
  • H. Carranza-Mejia
    • School of Physics and AstronomyUniversity of Edinburgh
  • L. Carson
    • Imperial College London
  • K. Carvalho Akiba
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • G. Casse
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • M. Cattaneo
    • European Organization for Nuclear Research (CERN)
  • Ch. Cauet
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Charles
    • Department of PhysicsUniversity of Oxford
  • Ph. Charpentier
    • European Organization for Nuclear Research (CERN)
  • P. Chen
    • Center for High Energy PhysicsTsinghua University
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • N. Chiapolini
    • Physik-InstitutUniversität Zürich
  • M. Chrzaszcz
    • Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of Sciences
  • K. Ciba
    • European Organization for Nuclear Research (CERN)
  • X. Cid Vidal
    • Universidad de Santiago de Compostela
  • G. Ciezarek
    • Imperial College London
  • P. E. L. Clarke
    • School of Physics and AstronomyUniversity of Edinburgh
  • M. Clemencic
    • European Organization for Nuclear Research (CERN)
  • H. V. Cliff
    • Cavendish LaboratoryUniversity of Cambridge
  • J. Closier
    • European Organization for Nuclear Research (CERN)
  • C. Coca
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • V. Coco
    • Nikhef National Institute for Subatomic Physics
  • J. Cogan
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • E. Cogneras
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • P. Collins
    • European Organization for Nuclear Research (CERN)
  • A. Comerma-Montells
    • Universitat de Barcelona
  • A. Contu
    • Sezione INFN di Cagliari
    • Department of PhysicsUniversity of Oxford
  • A. Cook
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • M. Coombes
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • S. Coquereau
    • LPNHEUniversité Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3
  • G. Corti
    • European Organization for Nuclear Research (CERN)
  • B. Couturier
    • European Organization for Nuclear Research (CERN)
  • G. A. Cowan
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • D. Craik
    • Department of PhysicsUniversity of Warwick
  • S. Cunliffe
    • Imperial College London
  • R. Currie
    • School of Physics and AstronomyUniversity of Edinburgh
  • C. D’Ambrosio
    • European Organization for Nuclear Research (CERN)
  • P. David
    • LPNHEUniversité Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3
  • P. N. Y. David
    • Nikhef National Institute for Subatomic Physics
  • I. De Bonis
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • K. De Bruyn
    • Nikhef National Institute for Subatomic Physics
  • S. De Capua
    • School of Physics and AstronomyUniversity of Manchester
  • M. De Cian
    • Physik-InstitutUniversität Zürich
  • J. M. De Miranda
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • L. De Paula
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • W. De Silva
    • University of Cincinnati
  • P. De Simone
    • Laboratori Nazionali dell’INFN di Frascati
  • D. Decamp
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • M. Deckenhoff
    • Fakultät PhysikTechnische Universität Dortmund
  • H. Degaudenzi
    • European Organization for Nuclear Research (CERN)
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • L. Del Buono
    • LPNHEUniversité Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3
  • C. Deplano
    • Sezione INFN di Cagliari
  • D. Derkach
    • Sezione INFN di Bologna
  • O. Deschamps
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • F. Dettori
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • A. Di Canto
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • J. Dickens
    • Cavendish LaboratoryUniversity of Cambridge
  • H. Dijkstra
    • European Organization for Nuclear Research (CERN)
  • M. Dogaru
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • F. Domingo Bonal
    • Universitat de Barcelona
  • S. Donleavy
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • F. Dordei
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • A. Dosil Suárez
    • Universidad de Santiago de Compostela
  • D. Dossett
    • Department of PhysicsUniversity of Warwick
  • A. Dovbnya
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • F. Dupertuis
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • R. Dzhelyadin
    • Institute for High Energy Physics (IHEP)
  • A. Dziurda
    • Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of Sciences
  • A. Dzyuba
    • Petersburg Nuclear Physics Institute (PNPI)
  • S. Easo
    • European Organization for Nuclear Research (CERN)
    • STFC Rutherford Appleton Laboratory
  • U. Egede
    • Imperial College London
  • V. Egorychev
    • Institute of Theoretical and Experimental Physics (ITEP)
  • S. Eidelman
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • D. van Eijk
    • Nikhef National Institute for Subatomic Physics
  • S. Eisenhardt
    • School of Physics and AstronomyUniversity of Edinburgh
  • U. Eitschberger
    • Fakultät PhysikTechnische Universität Dortmund
  • R. Ekelhof
    • Fakultät PhysikTechnische Universität Dortmund
  • L. Eklund
    • School of Physics and AstronomyUniversity of Glasgow
  • I. El Rifai
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • Ch. Elsasser
    • Physik-InstitutUniversität Zürich
  • D. Elsby
    • University of Birmingham
  • A. Falabella
    • Sezione INFN di Bologna
  • C. Färber
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • G. Fardell
    • School of Physics and AstronomyUniversity of Edinburgh
  • C. Farinelli
    • Nikhef National Institute for Subatomic Physics
  • S. Farry
    • School of PhysicsUniversity College Dublin
  • V. Fave
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • D. Ferguson
    • School of Physics and AstronomyUniversity of Edinburgh
  • V. Fernandez Albor
    • Universidad de Santiago de Compostela
  • F. Ferreira Rodrigues
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • M. Ferro-Luzzi
    • European Organization for Nuclear Research (CERN)
  • S. Filippov
    • Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN)
  • C. Fitzpatrick
    • European Organization for Nuclear Research (CERN)
  • M. Fontana
    • Max-Planck-Institut für Kernphysik (MPIK)
  • F. Fontanelli
    • Sezione INFN di Genova
  • R. Forty
    • European Organization for Nuclear Research (CERN)
  • O. Francisco
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • M. Frank
    • European Organization for Nuclear Research (CERN)
  • C. Frei
    • European Organization for Nuclear Research (CERN)
  • M. Frosini
    • Sezione INFN di Firenze
  • S. Furcas
    • Sezione INFN di Milano Bicocca
  • E. Furfaro
    • Sezione INFN di Roma Tor Vergata
  • A. Gallas Torreira
    • Universidad de Santiago de Compostela
  • D. Galli
    • Sezione INFN di Bologna
  • M. Gandelman
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • P. Gandini
    • Department of PhysicsUniversity of Oxford
  • Y. Gao
    • Center for High Energy PhysicsTsinghua University
  • J. Garofoli
    • Syracuse University
  • P. Garosi
    • School of Physics and AstronomyUniversity of Manchester
  • J. Garra Tico
    • Cavendish LaboratoryUniversity of Cambridge
  • L. Garrido
    • Universitat de Barcelona
  • C. Gaspar
    • European Organization for Nuclear Research (CERN)
  • R. Gauld
    • Department of PhysicsUniversity of Oxford
  • E. Gersabeck
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • M. Gersabeck
    • School of Physics and AstronomyUniversity of Manchester
  • T. Gershon
    • European Organization for Nuclear Research (CERN)
    • Department of PhysicsUniversity of Warwick
  • Ph. Ghez
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • V. Gibson
    • Cavendish LaboratoryUniversity of Cambridge
  • V. V. Gligorov
    • European Organization for Nuclear Research (CERN)
  • C. Göbel
    • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • D. Golubkov
    • Institute of Theoretical and Experimental Physics (ITEP)
  • A. Golutvin
    • Institute of Theoretical and Experimental Physics (ITEP)
    • European Organization for Nuclear Research (CERN)
    • Imperial College London
  • A. Gomes
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • H. Gordon
    • Department of PhysicsUniversity of Oxford
  • M. Grabalosa Gándara
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • R. Graciani Diaz
    • Universitat de Barcelona
  • L. A. Granado Cardoso
    • European Organization for Nuclear Research (CERN)
  • E. Graugés
    • Universitat de Barcelona
  • G. Graziani
    • Sezione INFN di Firenze
  • A. Grecu
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • E. Greening
    • Department of PhysicsUniversity of Oxford
  • S. Gregson
    • Cavendish LaboratoryUniversity of Cambridge
  • O. Grünberg
    • Institut für PhysikUniversität Rostock
  • B. Gui
    • Syracuse University
  • E. Gushchin
    • Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN)
  • Yu. Guz
    • Institute for High Energy Physics (IHEP)
  • T. Gys
    • European Organization for Nuclear Research (CERN)
  • C. Hadjivasiliou
    • Syracuse University
  • G. Haefeli
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • C. Haen
    • European Organization for Nuclear Research (CERN)
  • S. C. Haines
    • Cavendish LaboratoryUniversity of Cambridge
  • S. Hall
    • Imperial College London
  • T. Hampson
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • S. Hansmann-Menzemer
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • N. Harnew
    • Department of PhysicsUniversity of Oxford
  • S. T. Harnew
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • J. Harrison
    • School of Physics and AstronomyUniversity of Manchester
  • P. F. Harrison
    • Department of PhysicsUniversity of Warwick
  • T. Hartmann
    • Institut für PhysikUniversität Rostock
  • J. He
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • V. Heijne
    • Nikhef National Institute for Subatomic Physics
  • K. Hennessy
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • P. Henrard
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • J. A. Hernando Morata
    • Universidad de Santiago de Compostela
  • E. van Herwijnen
    • European Organization for Nuclear Research (CERN)
  • E. Hicks
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • D. Hill
    • Department of PhysicsUniversity of Oxford
  • M. Hoballah
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • C. Hombach
    • School of Physics and AstronomyUniversity of Manchester
  • P. Hopchev
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • W. Hulsbergen
    • Nikhef National Institute for Subatomic Physics
  • P. Hunt
    • Department of PhysicsUniversity of Oxford
  • T. Huse
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • N. Hussain
    • Department of PhysicsUniversity of Oxford
  • D. Hutchcroft
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • D. Hynds
    • School of Physics and AstronomyUniversity of Glasgow
  • V. Iakovenko
    • Institute for Nuclear Research of the National Academy of Sciences (KINR)
  • P. Ilten
    • School of PhysicsUniversity College Dublin
  • R. Jacobsson
    • European Organization for Nuclear Research (CERN)
  • A. Jaeger
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • E. Jans
    • Nikhef National Institute for Subatomic Physics
  • F. Jansen
    • Nikhef National Institute for Subatomic Physics
  • P. Jaton
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • F. Jing
    • Center for High Energy PhysicsTsinghua University
  • M. John
    • Department of PhysicsUniversity of Oxford
  • D. Johnson
    • Department of PhysicsUniversity of Oxford
  • C. R. Jones
    • Cavendish LaboratoryUniversity of Cambridge
  • B. Jost
    • European Organization for Nuclear Research (CERN)
  • M. Kaballo
    • Fakultät PhysikTechnische Universität Dortmund
  • S. Kandybei
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • M. Karacson
    • European Organization for Nuclear Research (CERN)
  • T. M. Karbach
    • European Organization for Nuclear Research (CERN)
  • I. R. Kenyon
    • University of Birmingham
  • U. Kerzel
    • European Organization for Nuclear Research (CERN)
  • T. Ketel
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • A. Keune
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • B. Khanji
    • Sezione INFN di Milano Bicocca
  • O. Kochebina
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • I. Komarov
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • R. F. Koopman
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • P. Koppenburg
    • Nikhef National Institute for Subatomic Physics
  • M. Korolev
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
  • A. Kozlinskiy
    • Nikhef National Institute for Subatomic Physics
  • L. Kravchuk
    • Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN)
  • K. Kreplin
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • M. Kreps
    • Department of PhysicsUniversity of Warwick
  • G. Krocker
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • P. Krokovny
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • F. Kruse
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Kucharczyk
    • Sezione INFN di Milano Bicocca
    • Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of Sciences
  • V. Kudryavtsev
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • T. Kvaratskheliya
    • Institute of Theoretical and Experimental Physics (ITEP)
    • European Organization for Nuclear Research (CERN)
  • V. N. La Thi
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • D. Lacarrere
    • European Organization for Nuclear Research (CERN)
  • G. Lafferty
    • School of Physics and AstronomyUniversity of Manchester
  • A. Lai
    • Sezione INFN di Cagliari
  • D. Lambert
    • School of Physics and AstronomyUniversity of Edinburgh
  • R. W. Lambert
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • E. Lanciotti
    • European Organization for Nuclear Research (CERN)
  • G. Lanfranchi
    • Laboratori Nazionali dell’INFN di Frascati
    • European Organization for Nuclear Research (CERN)
  • C. Langenbruch
    • European Organization for Nuclear Research (CERN)
  • T. Latham
    • Department of PhysicsUniversity of Warwick
  • C. Lazzeroni
    • University of Birmingham
  • R. Le Gac
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • J. van Leerdam
    • Nikhef National Institute for Subatomic Physics
  • J.-P. Lees
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • R. Lefèvre
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • A. Leflat
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
    • European Organization for Nuclear Research (CERN)
  • J. Lefrançois
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • O. Leroy
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • Y. Li
    • Center for High Energy PhysicsTsinghua University
  • L. Li Gioi
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • M. Liles
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • R. Lindner
    • European Organization for Nuclear Research (CERN)
  • C. Linn
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • B. Liu
    • Center for High Energy PhysicsTsinghua University
  • G. Liu
    • European Organization for Nuclear Research (CERN)
  • J. von Loeben
    • Sezione INFN di Milano Bicocca
  • J. H. Lopes
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • E. Lopez Asamar
    • Universitat de Barcelona
  • N. Lopez-March
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • H. Lu
    • Center for High Energy PhysicsTsinghua University
  • J. Luisier
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • H. Luo
    • School of Physics and AstronomyUniversity of Edinburgh
  • F. Machefert
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • I. V. Machikhiliyan
    • Institute of Theoretical and Experimental Physics (ITEP)
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • F. Maciuc
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • O. Maev
    • Petersburg Nuclear Physics Institute (PNPI)
    • European Organization for Nuclear Research (CERN)
  • S. Malde
    • Department of PhysicsUniversity of Oxford
  • G. Manca
    • Sezione INFN di Cagliari
  • G. Mancinelli
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • N. Mangiafave
    • Cavendish LaboratoryUniversity of Cambridge
  • U. Marconi
    • Sezione INFN di Bologna
  • R. Märki
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • J. Marks
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • G. Martellotti
    • Sezione INFN di Roma La Sapienza
  • A. Martens
    • LPNHEUniversité Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3
  • L. Martin
    • Department of PhysicsUniversity of Oxford
  • A. Martín Sánchez
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • M. Martinelli
    • Nikhef National Institute for Subatomic Physics
  • D. Martinez Santos
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • D. Martins Tostes
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • A. Massafferri
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • R. Matev
    • European Organization for Nuclear Research (CERN)
  • Z. Mathe
    • European Organization for Nuclear Research (CERN)
  • C. Matteuzzi
    • Sezione INFN di Milano Bicocca
  • M. Matveev
    • Petersburg Nuclear Physics Institute (PNPI)
  • E. Maurice
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • A. Mazurov
    • Sezione INFN di Ferrara
    • Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN)
    • European Organization for Nuclear Research (CERN)
  • J. McCarthy
    • University of Birmingham
  • R. McNulty
    • School of PhysicsUniversity College Dublin
  • B. Meadows
    • Department of PhysicsUniversity of Oxford
    • University of Cincinnati
  • F. Meier
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Meissner
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • M. Merk
    • Nikhef National Institute for Subatomic Physics
  • D. A. Milanes
    • LPNHEUniversité Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3
  • M.-N. Minard
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • J. Molina Rodriguez
    • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • S. Monteil
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • D. Moran
    • School of Physics and AstronomyUniversity of Manchester
  • P. Morawski
    • Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of Sciences
  • R. Mountain
    • Syracuse University
  • I. Mous
    • Nikhef National Institute for Subatomic Physics
  • F. Muheim
    • School of Physics and AstronomyUniversity of Edinburgh
  • K. Müller
    • Physik-InstitutUniversität Zürich
  • R. Muresan
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • B. Muryn
    • AGH University of Science and Technology
  • B. Muster
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • P. Naik
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • T. Nakada
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • R. Nandakumar
    • STFC Rutherford Appleton Laboratory
  • I. Nasteva
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • M. Needham
    • School of Physics and AstronomyUniversity of Edinburgh
  • N. Neufeld
    • European Organization for Nuclear Research (CERN)
  • A. D. Nguyen
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • T. D. Nguyen
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • C. Nguyen-Mau
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. Nicol
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • V. Niess
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • R. Niet
    • Fakultät PhysikTechnische Universität Dortmund
  • N. Nikitin
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
  • T. Nikodem
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • S. Nisar
    • Institute of Information TechnologyCOMSATS
  • A. Nomerotski
    • Department of PhysicsUniversity of Oxford
  • A. Novoselov
    • Institute for High Energy Physics (IHEP)
  • A. Oblakowska-Mucha
    • AGH University of Science and Technology
  • V. Obraztsov
    • Institute for High Energy Physics (IHEP)
  • S. Oggero
    • Nikhef National Institute for Subatomic Physics
  • S. Ogilvy
    • School of Physics and AstronomyUniversity of Glasgow
  • O. Okhrimenko
    • Institute for Nuclear Research of the National Academy of Sciences (KINR)
  • R. Oldeman
    • Sezione INFN di Cagliari
    • European Organization for Nuclear Research (CERN)
  • M. Orlandea
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • J. M. Otalora Goicochea
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • P. Owen
    • Imperial College London
  • B. K. Pal
    • Syracuse University
  • A. Palano
    • Sezione INFN di Bari
  • M. Palutan
    • Laboratori Nazionali dell’INFN di Frascati
  • J. Panman
    • European Organization for Nuclear Research (CERN)
  • A. Papanestis
    • STFC Rutherford Appleton Laboratory
  • M. Pappagallo
    • School of Physics and AstronomyUniversity of Glasgow
  • C. Parkes
    • School of Physics and AstronomyUniversity of Manchester
  • C. J. Parkinson
    • Imperial College London
  • G. Passaleva
    • Sezione INFN di Firenze
  • G. D. Patel
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • M. Patel
    • Imperial College London
  • G. N. Patrick
    • STFC Rutherford Appleton Laboratory
  • C. Patrignani
    • Sezione INFN di Genova
  • C. Pavel-Nicorescu
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • A. Pazos Alvarez
    • Universidad de Santiago de Compostela
  • A. Pellegrino
    • Nikhef National Institute for Subatomic Physics
  • G. Penso
    • Sezione INFN di Roma La Sapienza
  • M. Pepe Altarelli
    • European Organization for Nuclear Research (CERN)
  • S. Perazzini
    • Sezione INFN di Bologna
  • D. L. Perego
    • Sezione INFN di Milano Bicocca
  • E. Perez Trigo
    • Universidad de Santiago de Compostela
  • A. Pérez-Calero Yzquierdo
    • Universitat de Barcelona
  • P. Perret
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • M. Perrin-Terrin
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • G. Pessina
    • Sezione INFN di Milano Bicocca
  • K. Petridis
    • Imperial College London
  • A. Petrolini
    • Sezione INFN di Genova
  • A. Phan
    • Syracuse University
  • E. Picatoste Olloqui
    • Universitat de Barcelona
  • B. Pietrzyk
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • T. Pilař
    • Department of PhysicsUniversity of Warwick
  • D. Pinci
    • Sezione INFN di Roma La Sapienza
  • S. Playfer
    • School of Physics and AstronomyUniversity of Edinburgh
  • M. Plo Casasus
    • Universidad de Santiago de Compostela
  • F. Polci
    • LPNHEUniversité Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3
  • G. Polok
    • Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of Sciences
  • A. Poluektov
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
    • Department of PhysicsUniversity of Warwick
  • E. Polycarpo
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • D. Popov
    • Max-Planck-Institut für Kernphysik (MPIK)
  • B. Popovici
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • C. Potterat
    • Universitat de Barcelona
  • A. Powell
    • Department of PhysicsUniversity of Oxford
  • J. Prisciandaro
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • V. Pugatch
    • Institute for Nuclear Research of the National Academy of Sciences (KINR)
  • A. Puig Navarro
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • W. Qian
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • J. H. Rademacker
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • B. Rakotomiaramanana
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. S. Rangel
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • I. Raniuk
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • N. Rauschmayr
    • European Organization for Nuclear Research (CERN)
  • G. Raven
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • S. Redford
    • Department of PhysicsUniversity of Oxford
  • M. M. Reid
    • Department of PhysicsUniversity of Warwick
  • A. C. dos Reis
    • Centro Brasileiro de Pesquisas Físicas (CBPF)
  • S. Ricciardi
    • STFC Rutherford Appleton Laboratory
  • A. Richards
    • Imperial College London
  • K. Rinnert
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • V. Rives Molina
    • Universitat de Barcelona
  • D. A. Roa Romero
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • P. Robbe
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • E. Rodrigues
    • School of Physics and AstronomyUniversity of Manchester
  • P. Rodriguez Perez
    • Universidad de Santiago de Compostela
  • G. J. Rogers
    • Cavendish LaboratoryUniversity of Cambridge
  • S. Roiser
    • European Organization for Nuclear Research (CERN)
  • V. Romanovsky
    • Institute for High Energy Physics (IHEP)
  • A. Romero Vidal
    • Universidad de Santiago de Compostela
  • J. Rouvinet
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • T. Ruf
    • European Organization for Nuclear Research (CERN)
  • H. Ruiz
    • Universitat de Barcelona
  • G. Sabatino
    • Sezione INFN di Roma La Sapienza
  • J. J. Saborido Silva
    • Universidad de Santiago de Compostela
  • N. Sagidova
    • Petersburg Nuclear Physics Institute (PNPI)
  • P. Sail
    • School of Physics and AstronomyUniversity of Glasgow
  • B. Saitta
    • Sezione INFN di Cagliari
  • C. Salzmann
    • Physik-InstitutUniversität Zürich
  • B. Sanmartin Sedes
    • Universidad de Santiago de Compostela
  • M. Sannino
    • Sezione INFN di Genova
  • R. Santacesaria
    • Sezione INFN di Roma La Sapienza
  • C. Santamarina Rios
    • Universidad de Santiago de Compostela
  • E. Santovetti
    • Sezione INFN di Roma Tor Vergata
  • M. Sapunov
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • A. Sarti
    • Laboratori Nazionali dell’INFN di Frascati
  • C. Satriano
    • Sezione INFN di Roma La Sapienza
  • A. Satta
    • Sezione INFN di Roma Tor Vergata
  • M. Savrie
    • Sezione INFN di Ferrara
  • D. Savrina
    • Institute of Theoretical and Experimental Physics (ITEP)
    • Institute of Nuclear PhysicsMoscow State University (SINP MSU)
  • P. Schaack
    • Imperial College London
  • M. Schiller
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • H. Schindler
    • European Organization for Nuclear Research (CERN)
  • S. Schleich
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Schlupp
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Schmelling
    • Max-Planck-Institut für Kernphysik (MPIK)
  • B. Schmidt
    • European Organization for Nuclear Research (CERN)
  • O. Schneider
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • A. Schopper
    • European Organization for Nuclear Research (CERN)
  • M.-H. Schune
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • R. Schwemmer
    • European Organization for Nuclear Research (CERN)
  • B. Sciascia
    • Laboratori Nazionali dell’INFN di Frascati
  • A. Sciubba
    • Laboratori Nazionali dell’INFN di Frascati
  • M. Seco
    • Universidad de Santiago de Compostela
  • A. Semennikov
    • Institute of Theoretical and Experimental Physics (ITEP)
  • K. Senderowska
    • AGH University of Science and Technology
  • I. Sepp
    • Imperial College London
  • N. Serra
    • Physik-InstitutUniversität Zürich
  • J. Serrano
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • P. Seyfert
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • M. Shapkin
    • Institute for High Energy Physics (IHEP)
  • I. Shapoval
    • European Organization for Nuclear Research (CERN)
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • P. Shatalov
    • Institute of Theoretical and Experimental Physics (ITEP)
  • Y. Shcheglov
    • Petersburg Nuclear Physics Institute (PNPI)
  • T. Shears
    • European Organization for Nuclear Research (CERN)
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • L. Shekhtman
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • O. Shevchenko
    • NSC Kharkiv Institute of Physics and Technology (NSC KIPT)
  • V. Shevchenko
    • Institute of Theoretical and Experimental Physics (ITEP)
  • A. Shires
    • Imperial College London
  • R. Silva Coutinho
    • Department of PhysicsUniversity of Warwick
  • T. Skwarnicki
    • Syracuse University
  • N. A. Smith
    • Oliver Lodge LaboratoryUniversity of Liverpool
  • E. Smith
    • STFC Rutherford Appleton Laboratory
    • Department of PhysicsUniversity of Oxford
  • M. Smith
    • School of Physics and AstronomyUniversity of Manchester
  • K. Sobczak
    • Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC
  • M. D. Sokoloff
    • University of Cincinnati
  • F. J. P. Soler
    • School of Physics and AstronomyUniversity of Glasgow
  • F. Soomro
    • Laboratori Nazionali dell’INFN di Frascati
    • European Organization for Nuclear Research (CERN)
  • D. Souza
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • B. Souza De Paula
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • B. Spaan
    • Fakultät PhysikTechnische Universität Dortmund
  • A. Sparkes
    • School of Physics and AstronomyUniversity of Edinburgh
  • P. Spradlin
    • School of Physics and AstronomyUniversity of Glasgow
  • F. Stagni
    • European Organization for Nuclear Research (CERN)
  • S. Stahl
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • O. Steinkamp
    • Physik-InstitutUniversität Zürich
  • S. Stoica
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • S. Stone
    • Syracuse University
  • B. Storaci
    • Physik-InstitutUniversität Zürich
  • M. Straticiuc
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • U. Straumann
    • Physik-InstitutUniversität Zürich
  • V. K. Subbiah
    • European Organization for Nuclear Research (CERN)
  • S. Swientek
    • Fakultät PhysikTechnische Universität Dortmund
  • V. Syropoulos
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • M. Szczekowski
    • National Center for Nuclear Research (NCBJ)
  • P. Szczypka
    • European Organization for Nuclear Research (CERN)
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • T. Szumlak
    • AGH University of Science and Technology
  • S. T’Jampens
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • M. Teklishyn
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • E. Teodorescu
    • Horia Hulubei National Institute of Physics and Nuclear Engineering
  • F. Teubert
    • European Organization for Nuclear Research (CERN)
  • C. Thomas
    • Department of PhysicsUniversity of Oxford
  • E. Thomas
    • European Organization for Nuclear Research (CERN)
  • J. van Tilburg
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • V. Tisserand
    • LAPPUniversité de Savoie, CNRS/IN2P3
  • M. Tobin
    • Physik-InstitutUniversität Zürich
  • S. Tolk
    • Nikhef National Institute for Subatomic Physics and VU University Amsterdam
  • D. Tonelli
    • European Organization for Nuclear Research (CERN)
  • S. Topp-Joergensen
    • Department of PhysicsUniversity of Oxford
  • N. Torr
    • Department of PhysicsUniversity of Oxford
  • E. Tournefier
    • LAPPUniversité de Savoie, CNRS/IN2P3
    • Imperial College London
  • S. Tourneur
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. T. Tran
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. Tresch
    • Physik-InstitutUniversität Zürich
  • A. Tsaregorodtsev
    • CPPMAix-Marseille Université, CNRS/IN2P3
  • P. Tsopelas
    • Nikhef National Institute for Subatomic Physics
  • N. Tuning
    • Nikhef National Institute for Subatomic Physics
  • M. Ubeda Garcia
    • European Organization for Nuclear Research (CERN)
  • A. Ukleja
    • National Center for Nuclear Research (NCBJ)
  • D. Urner
    • School of Physics and AstronomyUniversity of Manchester
  • U. Uwer
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • V. Vagnoni
    • Sezione INFN di Bologna
  • G. Valenti
    • Sezione INFN di Bologna
  • R. Vazquez Gomez
    • Universitat de Barcelona
  • P. Vazquez Regueiro
    • Universidad de Santiago de Compostela
  • S. Vecchi
    • Sezione INFN di Ferrara
  • J. J. Velthuis
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • M. Veltri
    • Sezione INFN di Firenze
  • G. Veneziano
    • Ecole Polytechnique Fédérale de Lausanne (EPFL)
  • M. Vesterinen
    • European Organization for Nuclear Research (CERN)
  • B. Viaud
    • LALUniversité Paris-Sud, CNRS/IN2P3
  • D. Vieira
    • Universidade Federal do Rio de Janeiro (UFRJ)
  • X. Vilasis-Cardona
    • Universitat de Barcelona
  • A. Vollhardt
    • Physik-InstitutUniversität Zürich
  • D. Volyanskyy
    • Max-Planck-Institut für Kernphysik (MPIK)
  • D. Voong
    • H.H. Wills Physics LaboratoryUniversity of Bristol
  • A. Vorobyev
    • Petersburg Nuclear Physics Institute (PNPI)
  • V. Vorobyev
    • Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University
  • C. Voß
    • Institut für PhysikUniversität Rostock
  • H. Voss
    • Max-Planck-Institut für Kernphysik (MPIK)
  • R. Waldi
    • Institut für PhysikUniversität Rostock
  • R. Wallace
    • School of PhysicsUniversity College Dublin
  • S. Wandernoth
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • J. Wang
    • Syracuse University
  • D. R. Ward
    • Cavendish LaboratoryUniversity of Cambridge
  • N. K. Watson
    • University of Birmingham
  • A. D. Webber
    • School of Physics and AstronomyUniversity of Manchester
  • D. Websdale
    • Imperial College London
  • M. Whitehead
    • Department of PhysicsUniversity of Warwick
  • J. Wicht
    • European Organization for Nuclear Research (CERN)
  • J. Wiechczynski
    • Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of Sciences
  • D. Wiedner
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • L. Wiggers
    • Nikhef National Institute for Subatomic Physics
  • G. Wilkinson
    • Department of PhysicsUniversity of Oxford
  • M. P. Williams
    • Department of PhysicsUniversity of Warwick
    • STFC Rutherford Appleton Laboratory
  • M. Williams
    • Imperial College London
  • F. F. Wilson
    • STFC Rutherford Appleton Laboratory
  • J. Wishahi
    • Fakultät PhysikTechnische Universität Dortmund
  • M. Witek
    • Henryk Niewodniczanski Institute of Nuclear PhysicsPolish Academy of Sciences
  • S. A. Wotton
    • Cavendish LaboratoryUniversity of Cambridge
  • S. Wright
    • Cavendish LaboratoryUniversity of Cambridge
  • S. Wu
    • Center for High Energy PhysicsTsinghua University
  • K. Wyllie
    • European Organization for Nuclear Research (CERN)
  • Y. Xie
    • European Organization for Nuclear Research (CERN)
    • School of Physics and AstronomyUniversity of Edinburgh
  • F. Xing
    • Department of PhysicsUniversity of Oxford
  • Z. Xing
    • Syracuse University
  • Z. Yang
    • Center for High Energy PhysicsTsinghua University
  • R. Young
    • School of Physics and AstronomyUniversity of Edinburgh
  • X. Yuan
    • Center for High Energy PhysicsTsinghua University
  • O. Yushchenko
    • Institute for High Energy Physics (IHEP)
  • M. Zangoli
    • Sezione INFN di Bologna
  • M. Zavertyaev
    • Max-Planck-Institut für Kernphysik (MPIK)
  • F. Zhang
    • Center for High Energy PhysicsTsinghua University
  • L. Zhang
    • Syracuse University
  • W. C. Zhang
    • School of PhysicsUniversity College Dublin
  • Y. Zhang
    • Center for High Energy PhysicsTsinghua University
  • A. Zhelezov
    • Physikalisches InstitutRuprecht-Karls-Universität Heidelberg
  • L. Zhong
    • Center for High Energy PhysicsTsinghua University
  • A. Zvyagin
    • European Organization for Nuclear Research (CERN)
Open AccessRegular Article - Experimental Physics

DOI: 10.1140/epjc/s10052-013-2462-2

Cite this article as:
The LHCb Collaboration, Aaij, R., Abellan Beteta, C. et al. Eur. Phys. J. C (2013) 73: 2462. doi:10.1140/epjc/s10052-013-2462-2

Abstract

The branching fractions of the decay \(B^{+} \to p \bar{p} K^{+}\) for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb−1, collected by the LHCb experiment. The total branching fraction, its charmless component \((M_{p\bar{p}}<2.85~\text {GeV}/c^{2})\) and the branching fractions via the resonant \(c\bar{c}\) states ηc(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-013-2462-2/MediaObjects/10052_2013_2462_Equa_HTML.gif
Upper limits on the B+ branching fractions into the ηc(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained.

1 Introduction

The \(B^{+} \to p \bar{p} K^{+}\) decay1 offers a clean environment to study \(c\bar{c}\) states and charmonium-like mesons that decay to \(p\bar{p}\) and excited \(\bar{ \varLambda }\) baryons that decay to \(\bar{p} K^{+}\), and to search for glueballs or exotic states. The presence of \(p \bar{p}\) in the final state allows intermediate states of any quantum numbers to be studied and the existence of the charged kaon in the final state significantly enhances the signal to background ratio in the selection procedure. Measurements of intermediate charmonium-like states, such as the X(3872), are important to clarify their nature [1, 2] and to determine their partial width to \(p\bar{p}\), which is crucial to predict the production rate of these states in dedicated experiments [3]. BaBar and Belle have previously measured the \(B^{+} \to p \bar{p} K^{+}\) branching fraction, including contributions from the J/ψ and ηc(1S) intermediate states [4, 5]. The data sample, corresponding to an integrated luminosity of 1.0 fb−1, collected by LHCb at \(\sqrt{s}=7~\text {TeV}\) allows the study of substructures in the \(B^{+}\to p\bar{p} K^{+}\) decays with a sample ten times larger than those available at previous experiments.

In this paper we report measurements of the ratios of branching fractions
$$ \mathcal{R}({\rm mode}) =\frac{\mathcal{B}(B^{+} \to{\rm mode}\to p\bar{p} K^{+})}{\mathcal{B}(B^{+}\to J/\psi K^{+}\to p\bar{p} K^{+})}, $$
(1)
where “mode” corresponds to the intermediate ηc(1S), ψ(2S), ηc(2S), χc0(1P), hc(1P), X(3872) or X(3915) states, together with a kaon.

2 Detector and software

The LHCb detector [6] is a single-arm forward spectrometer covering the pseudorapidity range 2<η<5, designed for the study of particles containing b or c quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about \(4{\rm\,Tm}\), and three stations of silicon-strip detectors and straw drift-tubes placed downstream. The combined tracking system has momentum (p) resolution Δp/p that varies from 0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c, and impact parameter resolution of 20 μm for tracks with high transverse momentum (\(p_{\rm T}\)). Charged hadrons are identified using two ring-imaging Cherenkov (RICH) detectors. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and pre-shower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The trigger [7] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage where candidates are fully reconstructed. The hardware trigger selects hadrons with high transverse energy in the calorimeter. The software trigger requires a two-, three- or four-track secondary vertex with a high \(p_{\rm T}\) sum of the tracks and a significant displacement from the primary pp interaction vertices (PVs). At least one track should have \(p_{\rm T}> 1.7~\text{GeV/}c\) and impact parameter (IP) χ2 with respect to the primary interaction greater than 16. The IP χ2 is defined as the difference between the χ2 of the PV reconstructed with and without the considered track. A multivariate algorithm is used for the identification of secondary vertices consistent with the decay of a b hadron.

Simulated \(B^{+} \to p \bar{p} K^{+}\) decays, generated uniformly in phase space, are used to optimize the signal selection and to evaluate the ratio of the efficiencies for each considered channel with respect to the J/ψ channel. Separate samples of \(B^{+} \to J/\psi K^{+} \to p \bar{p} K^{+}\) and \(B^{+} \to\eta_{c}(1S) K^{+} \to p \bar{p} K^{+}\) decays, generated with the known angular distributions, are used to check the dependence of the efficiency ratio on the angular distribution. In the simulation, pp collisions are generated using Pythia 6.4 [8] with a specific LHCb configuration [9]. Decays of hadronic particles are described by EvtGen [10] in which final state radiation is generated by Photos [11]. The interaction of the generated particles with the detector and its response are implemented using the Geant4 toolkit [12, 13] as described in Ref. [14].

3 Candidate selection

Candidate \(B^{+}\to p\bar{p} K^{+}\) decays are reconstructed from any combination of three charged tracks with total charge of +1. The final state particles are required to have a track fit with a \(\chi ^{2}/{\rm ndf} < 3\) where ndf is the number of degrees of freedom. They must also have p>1500 MeV/c, \(p_{\rm T} > 100~\text {MeV}/c\), and IP χ2>1 with respect to any primary vertex in the event. Particle identification (PID) requirements, based on the RICH detector information, are applied to p and \(\bar{p}\) candidates. The discriminating variables between different particle hypotheses (π, K, p) are the differences between log-likelihood values \(\Delta\ln\mathcal{L}_{\alpha\beta}\) under particle hypotheses α and β, respectively. The p and \(\bar{p}\) candidates are required to have \(\Delta \ln\mathcal{L}_{p\pi}>-5\). The reconstructed B+ candidates are required to have an invariant mass in the range 5079–5579 MeV/c2. The asymmetric invariant mass range around the nominal B+ mass is designed to select also \(B^{+} \to p \bar{p} \pi^{+}\) candidates without any requirement on the PID of the kaon. The PV associated to each B+ candidate is defined to be the one for which the B+ candidate has the smallest IP χ2. The B+ candidate is required to have a vertex fit with a \(\chi^{2}/{\rm ndf}<12\) and a distance greater than 3 mm, a χ2 for the flight distance greater than 500, and an IP χ2<10 with respect to the associated PV. The maximum distance of closest approach between daughter tracks has to be less than 0.2 mm. The angle between the reconstructed momentum of the B+ candidate and the B+ flight direction (\(\theta_{\rm fl}\)) is required to have \(\cos\theta _{\rm fl}>0.99998\).

The reconstructed candidates that meet the above criteria are filtered using a boosted decision tree (BDT) algorithm [15]. The BDT is trained with a sample of simulated \(B^{+} \to p \bar{p} K^{+}\) signal candidates and a background sample of data candidates taken from the invariant mass sidebands in the ranges 5080–5220 MeV/c2 and 5340–5480 MeV/c2. The variables used by the BDT to discriminate between signal and background candidates are: the \(p_{\rm T}\) of each reconstructed track; the sum of the daughters’ pT; the sum of the IP χ2 of the three daughter tracks with respect to the primary vertex; the IP of the daughter, with the highest \(p_{\rm T}\), with respect to the primary vertex; the number of daughters with \(p_{\rm T} > 900~\text {GeV}/c\); the maximum distance of closest approach between any two of the B+ daughter particles; the IP of the B+ candidate with respect to the primary vertex; the distance between primary and secondary vertices; the \(\theta_{\rm fl}\) angle; the \(\chi^{2}/{\rm ndf}\) of the secondary vertex; a pointing variable defined as \(\frac{P\sin\theta}{P\sin\theta+ \sum_{i} p_{\rm T,i}}\), where P is the total momentum of the three-particle final state, θ is the angle between the direction of the sum of the daughter’s momentum and the direction of the flight distance of the B+ and \(\sum_{i} p_{{\rm T},i}\) is the sum of the transverse momenta of the daughters; and the log likelihood difference for each daughter between the assumed PID hypothesis and the pion hypothesis. The selection criterion on the BDT response (Fig. 1) is chosen in order to have a signal to background ratio of the order of unity. This corresponds to a BDT response value of −0.11. The efficiency of the BDT selection is greater than 92 % with a background rejection greater than 86 %.
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-013-2462-2/MediaObjects/10052_2013_2462_Fig1_HTML.gif
Fig. 1

Distribution of the BDT algorithm response evaluated for background candidates from the data sidebands (red hatched area), and signal candidates from simulation (blue filled area). The dotted line (black) indicates the chosen BDT response value (Color figure online)

4 Signal yield determination

The signal yield is determined from an unbinned extended maximum likelihood fit to the invariant mass of selected \(B^{+} \to p \bar{p} K^{+}\) candidates, shown in Fig. 2(a). The signal component is parametrized as the sum of two Gaussian functions with the same mean and different widths. The background component is parametrized as a linear function. The signal yield of the charmless component is determined by performing the same fit described above to the sample of \(B^{+} \to p \bar{p} K^{+}\) candidates with \(M_{p\bar{p}} < 2.85~\text {GeV}/c^{2}\), shown in Fig. 2(b). The B+ mass and widths, evaluated with the invariant mass fits to all of the \(B^{+} \to p \bar{p} K^{+}\) candidates, are compatible with the values obtained for the charmless component.
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-013-2462-2/MediaObjects/10052_2013_2462_Fig2_HTML.gif
Fig. 2

Invariant mass distribution of (a) all selected \(B^{+} \to p \bar{p} K^{+}\) candidates and (b) candidates having \(M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}\). The points with error bars are the data and the solid lines are the result of the fit. The dotted lines represent the two Gaussian functions (red) and the dashed line the linear function (green) used to parametrize the signal and the background, respectively. The vertical lines (black) indicate the signal region. The two plots below the mass distributions show the pulls (Color figure online)

The signal yields for the charmonium contributions, \(B^{+}\to(c\bar{c}) K^{+} \to p\bar{p} K^{+}\), are determined by fitting the \(p\bar{p}\) invariant mass distribution of \(B^{+} \to p\bar{p} K^{+}\) candidates within the B+ mass signal window, \(\vert M_{p\bar{p} K^{+}} - M_{B^{+}}\vert< 50~\text {MeV}/c^{2}\). Simulations show that no narrow structures are induced in the \(p \bar{p}\) spectrum as kinematic reflections of possible \(B^{+} \to p \bar{\varLambda} \to p \bar{p} K^{+}\) intermediate states.

An unbinned extended maximum likelihood fit to the \(p\bar{p}\) invariant mass distribution, shown in Fig. 3, is performed over the mass range 2400–4500 MeV/c2. The signal components of the narrow resonances J/ψ, ψ(2S), hc(1P), and X(3872), whose natural widths are much smaller than the \(p\bar{p}\) invariant mass resolution, are parametrized by Gaussian functions. The signal components for the ηc(1S), χc0(1P), ηc(2S), and X(3915) are parametrized by Voigtian functions.2 Since the \(p\bar{p}\) invariant mass resolution is approximately constant in the explored range, the resolution parameters for all resonances, except the ψ(2S), are fixed to the J/ψ value (σJ/ψ=8.9±0.2 MeV/c2). The background shape is parametrized as \(f(M)=e^{c_{1}M+ c_{2}M^{2}}\) where c1 and c2 are fit parameters. The J/ψ and ψ(2S) resolution parameters, the mass values of the ηc(1S), J/ψ, and ψ(2S) states, and the ηc(1S) natural width are left free in the fit. The masses and widths for the other signal components are fixed to the corresponding world averages [16]. The \(p\bar{p}\) invariant mass resolution, determined by the fit to the ψ(2S) is σψ(2S)=7.9±1.7 MeV/c2.
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-013-2462-2/MediaObjects/10052_2013_2462_Fig3_HTML.gif
Fig. 3

Invariant mass distribution of the \(p \bar{p}\) system for \(B^{+} \to p\bar{p} K^{+}\) candidates within the B+ mass signal window, \(\vert M(p\bar{p} K^{+}) - M_{B^{+}}\vert< 50~\text {MeV}/c^{2}\). The dotted lines represent the Gaussian and Voigtian functions (red) and the dashed line the smooth function (green) used to parametrize the signal and the background, respectively. The bottom plot shows the pulls (Color figure online)

The fit result is shown in Fig. 3. Figures 4 and 5 show the details of the fit result in the regions around the ηc(1S) and J/ψ, ηc(2S) and ψ(2S), χc0(1P) and hc(1P), and X(3872) and X(3915) resonances. Any bias introduced by the inaccurate description of the tails of the ηc(1S), J/ψ and ψ(2S) resonances is taken into account in the systematic uncertainty evaluation.
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-013-2462-2/MediaObjects/10052_2013_2462_Fig4_HTML.gif
Fig. 4

Invariant mass distribution of the \(p \bar{p}\) system in the regions around (a) the ηc(1S) and J/ψ and (b) the ηc(2S) and ψ(2S) states. The dotted lines represent the Gaussian and the Voigtian functions (red) and the dashed line the smooth function (green) used to parametrize the signal and the background, respectively. The two plots below the mass distribution show the pulls (Color figure online)

https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-013-2462-2/MediaObjects/10052_2013_2462_Fig5_HTML.gif
Fig. 5

Invariant mass distribution of the \(p \bar{p}\) system in the regions around (a) the χc0(1P) and hc and (b) the X(3872) and X(3915) states. The dotted lines represent the Gaussian and Voigitian functions (red) and the dashed line the smooth function (green) used to parametrize the signal and the background, respectively. The two plots below the mass distribution show the pulls (Color figure online)

The contribution of \(c\bar{c}\to p\bar{p}\) from processes other than \(B^{+} \to p \bar{p} K^{+}\) decays, denoted as “non-signal”, is estimated from a fit to the \(p \bar{p}\) mass in the B+ mass sidebands 5130–5180 and 5380–5430 MeV/c2. Except for the J/ψ mode, no evidence of a non-signal contribution is found. The non-signal contribution to the J/ψ signal yield in the B+ mass window is 43±11 candidates and is subtracted from the number of J/ψ signal candidates.

The signal yields, corrected for the non-signal contribution, are reported in Table 1. For the intermediate charmonium states ηc(2S), χc0(1P), hc(1P), X(3872) and X(3915), there is no evidence of signal. The 95 % CL upper limits on the number of candidates are shown in Table 1 and are determined from the likelihood profile integrating over the nuisance parameters. Since for the X(3872) the fitted signal yield is negative, the upper limit has been calculated integrating the likelihood only in the physical region of a signal yield greater than zero.
Table 1

Signal yields for the different channels and corresponding 95 % CL upper limits for modes with less than 3σ statistical significance. For the J/ψ mode, the non-signal yield is subtracted. Uncertainties are statistical only

B+ decay mode

Signal yield

Upper limit (95 % CL)

\(p\bar{p} K^{+}\) [total]

6951 ± 176

 

\(p\bar{p} K^{+}\ [M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}]\)

3238 ± 122

 

J/ψK+

1458 ± 42

 

ηc(1S)K+

856 ± 46

 

ψ(2S)K+

107 ± 16

 

ηc(2S)K+

39 ± 15

<65.4

χc0(1P)K+

15 ± 13

<38.1

hc(1P)K+

21 ± 11

<40.2

X(3872)K+

−9 ± 8

<10.3

X(3915)K+

13 ± 17

<42.1

5 Efficiency determination

The ratio of branching fractions is calculated using
$$\begin{aligned} \mathcal{R}({\rm mode}) =&\frac{\mathcal{B}(B^{+} \to{\rm mode}\to p\bar{p} K^{+})}{\mathcal{B}(B^{+}\to J/\psi K^{+}\to p\bar{p} K^{+})} \\=& \frac {N_{\rm mode}}{N_{ J/\psi }}\times \frac{\epsilon_{ J/\psi }}{\epsilon_{\rm mode}}, \end{aligned}$$
(2)
where \(N_{\rm mode}\) and NJ/ψ are the signal yields for the given mode and the reference mode, \(B^{+}\to J/\psi K^{+}\to p\bar{p} K^{+}\), and \(\epsilon_{\rm mode}/\epsilon_{ J/\psi }\) is the corresponding ratio of efficiencies. The efficiency is the product of the reconstruction, trigger, and selection efficiencies, and is estimated using simulated data samples.
Since the track multiplicity distribution for simulated events differs from that observed in data, simulated candidates are assigned a weight so that the weighted distribution reproduces the observed multiplicity distribution. The distributions of \(\Delta\ln\mathcal{L}_{K\pi}\) and \(\Delta\ln\mathcal{L}_{p\pi}\) for kaons and protons in data are obtained in bins of momentum, pseudorapidity and number of tracks from control samples of D∗+D0(→Kπ+)π+ decays for kaons and Λ decays for protons, which are then used on a track-by-track basis to correct the simulation. The efficiency as a function of \(M_{p \bar{p}}\) is shown in Fig. 6. A linear fit to the efficiency distribution is performed and the efficiency ratios are determined based on the fit result.
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-013-2462-2/MediaObjects/10052_2013_2462_Fig6_HTML.gif
Fig. 6

Efficiency as a function of \(M_{p \bar{p}}\) for \(B^{+} \to p \bar{p} K^{+}\) decays. The solid line represents the linear fit to the efficiency distribution; the dashed line is the point-by-point interpolation used to estimate the systematic uncertainty

6 Systematic uncertainties

The measurements of the relative branching fractions depend on the ratios of signal yields and efficiencies with respect to the reference mode. Since the final state is the same in all cases, most of the systematic uncertainties cancel. The systematic uncertainty on the efficiency ratio, in each region of \(p \bar{p}\) invariant mass, is determined from the difference between the efficiency ratios calculated using the solid fitted line and the dashed point-by-point interpolation shown in Fig. 6. The uncertainty associated with the evaluation of the B+ signal yield has been determined by varying the fit range by ±30 MeV/c2, using a single Gaussian instead of a double Gaussian function to model the signal PDF, and using an exponential function to model the background. For each charmonium resonance the systematic uncertainty on the signal yield has been investigated by varying the B mass signal window by ±10 MeV/c2, the signal and background shape parametrization and the subtraction of the \(c\bar{c}\) contribution from the continuum. The systematic uncertainty associated with the parametrization of the signal tails of the J/ψ, ηc(1S) and ψ(2S) resonances is taken into account by taking the difference between the number of candidates in the observed distribution and the number of candidates calculated from the integral of the fit function in the range −6σ to −2.5σ. The systematic uncertainty associated with the selection procedure is estimated by changing the value of the BDT selection to −0.03, which retains 85 % of the signal with a 30 % background, and is found to be negligible. The contributions to the systematic uncertainties from the different sources are listed in Table 2. The total systematic uncertainty is determined by adding the individual contributions in quadrature.
Table 2

Relative systematic uncertainties (in %) on the relative branching fractions from different sources. The total systematic uncertainty is determined by adding the individual contributions in quadrature

Source

\(\mathcal{R}({\rm total})\)

\(\mathcal{R}(M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}) \)

\(\mathcal{R}( \eta _{ c } (1S))\)

\(\mathcal{R}(\psi(2S))\)

Efficiency ratio

0.21

0.5

3.3

4.8

B+ mass fit range

0.16

0.5

Sig. and Bkg. shape

2.5

3.6

1.8

6.5

B+ mass window

0.6

0.6

0.9

3.8

Non-signal component

0.4

5.1

Signal tail param.

1.0

1.0

1.2

4.3

Total

2.8

3.8

4.1

11.3

Source

\(\mathcal{R}(\eta_{c}(2S))\)

\(\mathcal{R}(\chi_{c0}(1P))\)

\(\mathcal{R}(h_{c}(1P))\)

\(\mathcal{R}(X(3872))\)

\(\mathcal {R}(X(3915))\)

Efficiency ratio

4.4

2.5

3.4

6.5

7.0

B+ mass fit range

 

Sig. and Bkg. shape

3.9

3.3

14.3

5.6

10.1

B+ mass window

11.3

23.6

23.6

17.5

7.5

Non-signal component

Signal tail param.

1.0

1.0

1.0

1.0

1.0

Total

12.8

24.0

27.8

19.5

15.5

7 Results

The results are summarized in Table 3 and the values of the product of branching fractions derived from our measurement using the world average values \(\mathcal{B}(B^{+} \to J/\psi K^{+}) =(1.013\pm0.034)\times10^{-3}\) and \(\mathcal{B}(J/\psi\to p\bar{p}) =(2.17\pm0.07)\times10^{-3}\) [16] are listed in Table 4. The branching fractions obtained are compatible with the world average values [16]. The upper limit on \(\mathcal{B}(B^{+} \to\chi_{c0}(1P) K^{+} \to p \bar{p} K^{+})\) is compatible with the world average \(\mathcal{B}(B^{+} \to\chi _{c0}(1P) K^{+}) \times\mathcal{B}(\chi_{c0}(1P) \to p \bar{p}) = (0.030 \pm0.004) \times 10^{-6}\) [16]. We combine our upper limit for X(3872) with the known value for \(\mathcal{B} (B^{+} \to X(3872) K^{+} ) \times\mathcal{B} (X(3872) \to J/\psi\pi^{+} \pi^{-})= (8.6 \pm0.8) \times10^{-6}\) [16] to obtain the limit
$$ \frac{\mathcal{B} (X(3872) \to p \bar{p})}{\mathcal{B} (X(3872) \to J/\psi\pi^{+} \pi^{-})}< 2.0\times10^{-3}. $$
This limit challenges some of the predictions for the molecular interpretations of the X(3872) state and is approaching the range of predictions for a conventional χc1(2P) state [17, 18]. Using our result and the ηc(2S) branching fraction \(\mathcal{B} (B^{+} \to\eta_{c}(2S) K^{+})\times \mathcal{B} (\eta_{c}(2S) \to K \bar{K} \pi) = (3.4\, ^{+2.3}_{-1.6}) \times10^{-6}\) [16], a limit of
$$ \frac{\mathcal{B} (\eta_{c}(2S) \to p \bar{p})}{\mathcal{B} (\eta_{c}(2S) \to K \bar{K} \pi)} < 3.1 \times10^{-2} $$
is obtained.
Table 3

Signal yields, efficiency ratios, ratios of branching fractions and corresponding upper limits

\(B^{+}\to({\rm mode})\)

\(\to p\bar{p} K^{+}\)

Yield

± stat ± syst

\(\epsilon_{\rm mode}/\epsilon_{ J/\psi }\)

± syst

\(\mathcal{R}({\rm mode})\)

± stat ± syst

Upper Limit 95 % CL

J/ψK+

1458±42±24

1

total

6951±176±171

0.970±0.002

4.91±0.19±0.14

\({M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}}\)

3238±122±121

1.097±0.006

2.02±0.10±0.08

ηc(1S)K+

856±46±19

1.016±0.034

0.578±0.035±0.026

ψ(2S)K+

107±16±13

0.921±0.044

0.080±0.012±0.009

ηc(2S)K+

39±15±5

0.927±0.041

0.029±0.011±0.004

<0.048

χc0(1P)K+

15±13±4

0.957±0.024

0.011±0.009±0.003

<0.028

hc(1P)K+

21±11±5

0.943±0.032

0.015±0.008±0.004

<0.029

X(3872)K+

−9±8±2

0.896±0.058

−0.007±0.006±0.002

<0.008

X(3915)K+

13±17±5

0.890±0.062

0.010±0.013±0.002

<0.032

Table 4

Branching fractions for \(B^{+}\to({\rm mode})\to p\bar{p} K^{+}\) derived using the world average value of the \(\mathcal{B}(B^{+}\to J/\psi K^{+})\) and \(\mathcal{B}( J/\psi \to p\bar{p})\) branching fractions [16]. For the charmonium modes we compare our values to the product of the independently measured branching fractions. The first uncertainties are statistical, the second systematic in the present measurement, and the third systematic from the uncertainty on the J/ψ branching fraction

B+ decay mode

\(\mathcal{B}(B^{+}\to({\rm mode})\to p\bar{p} K^{+})\) (×106)

UL (95 % CL) (×106)

Previous measurements (×106) [4, 5]

total

10.81±0.42±0.30±0.49

 

\(10.76^{+0.36}_{-0.33} \pm0.70\)

\({M_{p \bar {p}} < 2.85~\text {GeV}/c^{2}}\)

4.46±0.21±0.18±0.20

 

5.12±0.31

ηc(1S)K+

1.27±0.08±0.05±0.06

 

1.54±0.16

ψ(2S)K+

0.175±0.027±0.020±0.008

 

0.176±0.012

ηc(2S)K+

0.063±0.025±0.009±0.003

<0.106

 

χc0(1P)K+

0.024±0.021±0.006±0.001

<0.062

0.030±0.004

hc(1P)K+

0.034±0.018±0.008±0.002

<0.064

 

X(3872)K+

−0.015±0.013±0.003±0.001

<0.017

 

X(3915)K+

0.022±0.029±0.004±0.001

<0.071

 

8 Summary

Based on a sample of 6951±176 \(B^{+} \to p \bar{p} K^{+}\) decays reconstructed in a data sample, corresponding to an integrated luminosity of 1.0 fb−1, collected with the LHCb detector, the following relative branching fractions are measured
https://static-content.springer.com/image/art%3A10.1140%2Fepjc%2Fs10052-013-2462-2/MediaObjects/10052_2013_2462_Equd_HTML.gif
An upper limit on the ratio \(\frac{\mathcal{B} (B^{+} \to X(3872) K^{+} \to p \bar{p} K^{+})}{\mathcal{B}(B^{+} \to J/\psi K^{+} \to p \bar{p} K^{+})} < 0.017\) is obtained, from which a limit of
$$ \frac{\mathcal{B} (X(3872) \to p \bar{p})}{\mathcal{B} (X(3872) \to J/\psi\pi^{+} \pi^{-})}< 2.0\times10^{-3} $$
is derived.
Footnotes
1

The inclusion of charge-conjugate modes is implied throughout the paper.

 
2

A Voigtian function is the convolution of a Breit-Wigner function with a Gaussian distribution.

 

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Copyright information

© CERN for the benefit of the LHCb collaboration 2013