Skip to main content
Log in

Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Fractional Brownian motion (fBm) is a nonstationary self-similar continuous stochastic process used to model many natural phenomena. A realization of the fBm can be numerically approximated by discrete paths which do not entirely preserve the self-similarity. We investigate the self-similarity at different time scales by decomposing the discrete paths of fBm into intrinsic components. The decomposition is realized by an automatic numerical algorithm based on successive smoothings stopped when the maximum monotonic variation of the averaged time series is reached. The spectral properties of the intrinsic components are analyzed through the monotony spectrum defined as the graph of the amplitudes of the monotonic segments with respect to their lengths (characteristic times). We show that, at intermediate time scales, the mean amplitude of the intrinsic components of discrete fBms scales with the mean characteristic time as a power law identical to that of the corresponding continuous fBm. As an application we consider hydrological time series of the transverse component of the transport process generated as a superposition of diffusive movements on advective transport in random velocity fields. We found that the transverse component has a rich structure of scales, which is not revealed by the analysis of the global variance, and that its intrinsic components may be self-similar only in particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gao, Y. Cao, W. Tung, J. Hu, Multiscale Analysis of Complex Time Series (Wiley, Hoboken, 2007)

  2. D.B. Percival, A.T. Walden, Wavelet Methods for Time Series Analysis (Cambridge University Press, Cambridge, 2000)

  3. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, Proc. R. Soc. Lond. A 454, 903 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. L. Lin, Y. Wang, H. Zhou, Adv. Adapt. Data Anal. 1, 543 (2009)

    Article  MathSciNet  Google Scholar 

  5. I. Daubechies, J. Lu, H.-T. Wu, Appl. Comput. Harmon. Anal. 30, 243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. T.Y. Hou, Z. Shi, Adv. Adapt. Data Anal. 3, 1 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Boashash, Proc. IEEE 80, 520 (1992)

    Article  ADS  Google Scholar 

  8. C. Vamoş, M. Crăciun, Eur. Phys. J. B 87, 301 (2014)

    Article  ADS  Google Scholar 

  9. B.B. Mandelbrot, J.W. Van Ness, SIAM Rev. 10, 422 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Carbone, G. Castelli, H.E. Stanley, Phys. Rev. E 69, 026105 (2004)

    Article  ADS  Google Scholar 

  11. A. Carbone, Phys. Rev. E 76, 056703 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. B.B. Mandelbrot, J.R. Wallis Noah, Water Resour. Res. 4, 909 (1968)

    Article  ADS  Google Scholar 

  13. T. Graves, R.B. Gramscy, N.Watkins, C.L.E. Franzke, arXiv:1406.6018 [stat.OT] (2014)

  14. N. Suciu, Phys. Rev. E 81, 056301 (2010)

    Article  ADS  Google Scholar 

  15. A.N. Shiryaev, Essentials of Stochastic Finance. Facts, Models, Theory (World Scientific, Singapore, 1999)

  16. R. Cont, in Proceedings of the Fractals in Engineering, edited by J. Lévy Véhel, E. Lutton (Springer, London, 2005), p. 159

  17. W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, IEEE/ACM Trans. Networking 2, 1 (1994)

    Article  Google Scholar 

  18. S. Stoev, M.S. Taqqu, C. Park, J.S. Marron, Computer Networking 48, 423 (2005)

    Article  Google Scholar 

  19. D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, 2nd edn. (Cambridge University Press, Cambridge, 1997)

  20. P.S. Addison, Fractals and Chaos. An Illustrated Course, (Institute of Physics Publishing, London, 1997)

  21. M.G. Trefry, F.P. Ruan, D. McLaughlin, Water Resour. Res. 39, 1063 (2003)

    ADS  Google Scholar 

  22. A. Fiori, I. Jankovic, G. Dagan, Water Resour. Res. 42, W06D13 (2006)

    Google Scholar 

  23. C. Vamoş, M. Crăciun, Phys. Rev. E 78, 036707 (2008)

    Article  ADS  Google Scholar 

  24. C. Vamoş, M. Crăciun, Automatic Trend Estimation (Springer, Dordrecht, 2012)

  25. J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S. Taqqu, in Theory and applications of long-range dependence, edited by P. Doukhan, G. Oppenheim, M. Taqqu, (Birkhäuser, Boston, 2003), p. 579

  26. Y. Meyer, F. Sellan, M.S. Taqqu, J. Fourier Anal. Appl. 5, 465 (2000)

    Article  MathSciNet  Google Scholar 

  27. P. Abry, F. Sellan, Appl. Comp. Harmonic Anal., 3, 377 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Suciu, Adv. Water Resour. 69, 114 (2014)

    Article  ADS  Google Scholar 

  29. H. Schwarze, U. Jaekel, H. Vereecken, Transport Porous Med. 43, 265 (2001)

    Article  Google Scholar 

  30. R.H. Kraichnan, Phys. Fluids 13, 22 (1970)

    Article  ADS  MATH  Google Scholar 

  31. J. Eberhard, N. Suciu, C. Vamos, J. Phys. A 40, 597 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. N. Suciu, S. Attinger, F.A. Radu, C. Vamoş, J. Vanderborght, H. Vereecken, P. Knabner, An. St. Univ. Ovidius Constanta 23, 167 (2015)

    Google Scholar 

  33. Y. Huang, F.G. Schmitt, J.-P. Hermand, Y. Gagne, Z. Lu, Y. Liu, Phys. Rev. E 84, 016208 (2011)

    Article  ADS  Google Scholar 

  34. L. Calvet, A. Fisher, B. Mandelbrot, Large deviations and the distribution of price changes (Cowles Foundation Discussion Paper, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Călin Vamoş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vamoş, C., Crăciun, M. & Suciu, N. Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components. Eur. Phys. J. B 88, 250 (2015). https://doi.org/10.1140/epjb/e2015-60515-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60515-5

Keywords

Navigation